

Pulsed 1.55µm lidar for axial aircraft wake vortex detection

<u>C Besson</u>, M Valla, G Canat, B Augère, D Fleury, D Goular, JP Cariou, A. Dolfi-Bouteyre ONERA (The French Aerospace Lab),

> S Brousmiche, S Lugan, L Bricteux, B Macq. UCL (Université Catholique de Louvain)

return on innovation

outline

- Introduction
- Lidar modeling
- Lidar design & build
- Field tests & results

delio

ONERA

test termine addressed that

outline

- Introduction
- Lidar modeling
- Lidar design & build
- Field tests & results

delio

ONERA

test termine addressed that

FIDELIO : Fiber laser Development for next generation Lidar Onboard detection system

Context

Increase aircraft safety during take off and landing

Objective

develop a coherent fibre laser lidar (1.5 micron wavelength) geared for the aerospace industry requirements, enabling on-board realisation of a LIDAR atmospheric hazard detection system

A testador al protocol i la

FIDELIO concept : onboard axial detection

Innovation

- Development of an «end to end» lidar modeling tool
- design and development of a pulsed fiber laser with high spectral brightness

Partners ELOP Industries (IL, coordinator, laser development & integration) ONERA (FR, special fiber specifications, laser design, lidar development) UCL (BE, real time signal processing & acquisition, wake-vortex modeling) IPHT (DE, special fiber development) Thales Avionics (FR, aircraft integration specifications) Thales Research and Technology (FR, laser design) CeramOptec GmbH (DE, fibre integration) INESC Porto (PT, laser research)

FIDELIO concept : onboard axial detection

elie

Concept

Axial detection Wake vortex detection thanks to spectral broadening At kilometer ranges At 1.5 µm

Feasibility demonstrated at 2 μm in MFLAME and IWAKE Programs

ONER

and the part of an and the state of the

Advantages of 1.55 µm fiber systems

- Low electrical consumption :
 - Electrical to optical efficiency of the order of 10%
- Wavelength most favourable for eyesafe LIDAR designs
- IR fiber technology reliability
 - easy to adjust
 - mechanically reliable in a vibrating environment
 - 1.5 µm fiber coherent LIDARs have been successfully operated in flight
- Compactness
- Flexibility in terms of onboard installation
 - subsystems spatially far apart in the aircraft body
 - linked together using fiber optics

outline

- Introduction
- Lidar modeling
- Lidar design & build
- Field tests & results

delio

ONERA

test termine addressed that

Lidar model flow chart

idelio

test therein address to 14

Axial detection FIDELIO modeling

delia

The lidar model takes into account :

•the observation geometry,

•the wake vortex velocity field,

•the scanning pattern,

- •the LIDAR instrument,
- •the wind turbulence outside the vortex,

ONERA

test terrarily addressed the

•the signal processing.

FIDELIO modeling

CC: Normalized covariance of the two images

pulse duration and vortex age influence

Young wake (20 s)

................

elie

Old wake (120 s)

ONERA

test terrarily addressed the

IC

FIDELIO : modeling conclusions

- At medium range (>1 km), the vortex is easier to detect by measuring the spectrum broadening. These results confirm the IWAKE conclusions
- Longer pulse duration (800 ns) gives better results than the nominal value of 400ns and leads to a high velocity resolution
- The vortex is easier to detect at old ages than at young ones, since dissipation increases the velocity dispersion on the observation axis.
- A High PRF can compensate for a low laser energy. Indeed a high PRF value enables incoherent summation, reducing speckle effect and therefore gives a better velocity resolution.
- For PRF=4 kHz, E=1 mJ, nominal atmospheric conditions: the theoretical LIDAR range is 2400 m.
- For PRF=10 kHz, E=0.1 mJ, nominal atmospheric conditions : the theoretical LIDAR range is 1200 m.

elia

A testador al protocol i la

outline

- Introduction
- Lidar modeling
- Lidar design & build
- Field tests & results

delio

ONERA

test termine addressed that

FIDELIO : laser research results

•Lab result :

•750 μ J, 5 kHz, 1 μ s pulses, with 4 amplification stages, and a special fiber developed by IPHT (not used in the lidar demonstrator), excellent beam quality (M²=1.3), fully polarized

- Integrated source used for Fidelio lidar test :
 - •3 amplification stages with large core fiber .

• 120 μ J, 12 kHz and 800 ns pulses, excellent beam quality (M²=1.3), fully polarized

elic

ONER

and the factor of the barry of the

Laser source transfer to industry

Energy: 100 µJ Pulse duration: 800 ns PRF: 12 kHz

Commercial laser 2009

delio

ONERA

but the ball of a state of the

Axial detection : lidar architecture

Rear view

delio

FIDELIO: architecture lidar

lelio

Lidar parameters

wavelength: laser pulse energy:	1.55 μm 0.1mJ 800ns
laser: M2= fully polarized	10kHz 1.3
WV range: Velocity resolution :	0.8 to 1.2km 1 m/s

- image frame rate: 0.2Hz 12°x3°
- field of view:

UCI

ONERA

and designing and successive into

Real time algoritms on simulated data

delio

Wind velocity

Wind velocity dispersion

ONERA

test therein address of a

outline

- Introduction
- Lidar modeling
- Lidar design & build
- Field tests & results

delio

ONERA

test termine addressed that

FIDELIO : Field tests at Orly airport (April 2008)

Lidar FoV

idelio

Estimated parameters:

Aircraft type: A318 Distance: 799,0 m Roll: 0.0 deg

ONERA

test the party and subtract into

lidar head viewed from rear

idelio

Laser location under the lidar head

Lidar installed in Bemol lab

ONERA

test termini adaptively jak

Orly set up

ONERA

the republication of a

22

lidar position 2 runway 07

distance from runway threshold is 800 m

delio

FIDELIO : Field tests

Wind velocity dispersion images computed after the passing of two successive aircrafts. Each box represents the 3 x12 field of view image acquired at different ranges (vertical axis: 16 gates spaced with 75 m) and at different time (horizontal axis: 8 successive scans).

2.2 2.4 2.6 2.8 3.0 3.2 3.4 Velocity dispersion [m/s]

lelia

ONERA

test terrarily addressed the

FIDELIO :Field tests

3D representation of wake vortex detection on two consecutive scans a few seconds after a B747 landing. Each rectangle corresponds to a range gate. The X axis represents the 12 horizontal field of view, Z axis the 3 vertical field of view and the Y axis the distance of the range gates.

elic

Axial detection FIDELIO: Conclusions

- FIDELIO project has generated important advances in research and development on fiber laser technology:
 - An innovative high brightness pulsed 1.5µm laser source has been built, based on a MOPFA architecture with a large core fiber. The beam quality is excellent (M2=1.3). Achieved pulsed energy is **120µJ** with a pulse repetition frequency of **12kHz** and a pulse duration of 800ns. With a further amplification stage, **750µJ** pulses were obtained in the lab at **5kHz** and 1µs with excellent beam quality.
 - A Doppler heterodyne LIDAR has been developed based on the 120µJ laser source with a high isolation free space circulator. The LIDAR includes a real time display of the wind field. Wind velocity dispersion is post-processed.
 - Field tests were carried out at Orly airport in April 2008. Axial aircraft wake vortex signatures have been successfully observed and acquired at a range of 1.2km with axial resolution of 75m for the first time with fiber laser source.

T.Peschel, Fraunhoffer institute, for the lending of IWAKE scanner

delio

