PROJECT

CHAiRLIFT

Compact Helical Arranged combustoRs with lean LIFTed flames

Funding: European (Horizon 2020)
Duration: Jan 2019 - Apr 2022
Status: Ongoing
Total project cost: €1,277,934
EU contribution: €1,277,934

Call for proposal: H2020-CS2-CFP08-2018-01
CORDIS RCN: 221606

Objectives:

The main objective of the CHAiRLIFT project is to assess an innovative combustor concept capable to achieve an ultra-lean, low NOx, operation of future engines. With this combustion concept the requirements of ACARE Flightpath 2050 will be fully satisfied. The CHAiRLIFT combustor concept comprises two novel features:

The first is to adopt “low swirl” lean lifted spray flames which feature a high degree of premixing and consequently significantly reduced NOx emissions. Inherent characteristics of such flames are the strongly reduced risk of flashback and a reduced susceptibility to thermo-acoustics instabilities compared to conventional swirl stabilized flames. However, such lifted flames bear the risk of lean blow out at some operating conditions.

A second novelty of the CHAiRLIFT concept an alternative approach to standard flame piloting is proposed, enabling a further reduction of NOx emissions. Stable and safe operations of the combustor are ensured by the interaction of adjacent flames in circumferential direction within the annular combustion chamber. This requires tilting of the axis of the flames relative to the axis of the machine. This design is called Short Helical Combustor (SHC). It has the advantage that no extra pilot flame is required which may produce additional NOx emissions. Additional benefits are the reduced length of the combustor. Most importantly, the turning angle of the NGV can be reduced resulting into a smaller number of NGV and hence reduced cooling air requirement.

Experimental and numerical investigations including the development of an advanced spray atomization model will be carried to assess the NOx reduction capabilities of the concept, by exploiting state of the art methodologies. To explore further NOx reduction capabilities of the concept, an advanced LBO active control will also be tested by combining ion sensor probe and plasma assisted combustion.

Parent Programmes:
H2020-EU.3.4. - Horizon 2020: Smart, Green and Integrated Transport

Institute type: Public institution
Institute name: European Commission
Funding type: Public (EU)
Other programmes: JTI-CS2-2018-CFP08-THT-01 Innovative NOx Reduction Technologies

Lead Organisation:

Universita Degli Studi Di Firenze

Address:
Piazza San Marco 4
50121 Florence
Italy

Organisation Website:
http://www.unifi.it

EU Contribution: €312,710

Partner Organisations:

Universite De Rouen Normandie

Address:
RUE THOMAS BECKET 1 MONT SAINT AIGNAN
76821 MONT SAINT AIGNAN CEDEX
France

Organisation Website:

EU Contribution: €185,125

Karlsruher Institut Fuer Technologie

Address:
Kaiserstrasse
76131 Karlsruhe
Germany

Organisation Website:
http://www.kit.edu

EU Contribution: €665,099

Universita Del Salento

Address:
PIAZZA TANCREDI 7
73100 LECCE
Italy

Organisation Website:
http://www.unisalento.it

EU Contribution: €115,000

Technologies:

- Emissions control systems
- NOx storage catalyst

Development phase: Research/Invention

STRIA Roadmaps:

- Vehicle design and manufacturing

Transport mode:

- Air transport

Transport sectors:

- Freight transport

Transport policies:

- Other specified

Geo-spatial type:

- Other