UNPLUGGED - Wireless charging for Electric Vehicles
Overview
Background & policy context:
Today electric vehicles (EV) are having a hard time being accepted by the customer and diffusing in the market. Even though many aspects of EVs seem making them very appealing (e.g. very low energy cost and zero tail pipe emissions) there are several concerns that people have on this technology:
Range anxiety: Because of the limited range of EVs caused by the current relatively low capacity of batteries, the freedom of the driver, one of the major reasons to own a vehicle, is limited EVs require a significantly higher initial investment cost than vehicles with common combustion engines due to the high cost of the energy storage (battery). The EV batteries need to recharge frequently and hence the driver has to find a suitable recharging stations and has to plan the routes accordingly. The charging process itself is very time consuming and hence user-unfriendly
Objectives:
The UNPLUGGED project aims to investigate how the use of inductive charging of Electric Vehicles (EV) in urban environments improves the convenience and sustainability of car-based mobility. In particular, it will be investigated how smart inductive charging infrastructure can facilitate full EV integration in the urban road systems while improving customer acceptance and perceived practicality.
Methodology:
UNPLUGGED will achieve these goals by examining in detail the technical feasibility, practical issues, interoperability, user perception and socio-economic impacts of inductive charging. As one special variant, inductive en-route charging will be investigated thoroughly. As part of the project, two smart inductive charging systems will be built, taking into consideration requirements from OEMs, energy utilities and end users. The systems will be innovative and will go beyond the current state of the art in terms of high power transfer, allowing for smart communication between the vehicle and the grid, as well as being in line with the latest inductive charging standards and considering interoperability. These innovative inductive charging systems designed and built as part of the project will then be tested and assessed in order to understand their potential impacts on urban mobility and the acceptance of e-mobility. Application in an en-route charging scenario in particular will be examined for different vehicle types, ranging from cars to buses. It is anticipated that UNPLUGGED will provide clear evidence on and demonstrate whether the use of smart inductive charging infrastructure can overcome some of the perceived barriers for e-mobility, such as range and size of on-board energy storage, and practical difficulties associated with installing traditional charging post infrastructure. UNPLUGGED will also include a feasibility study and economic model for dynamic en-route inductive charging. This technology is currently less mature than static en-route charging, however, it has the potential to provide larger improvements to the range and cost of EVs.
Share this page