Sorry, you need to enable JavaScript to visit this website.
English (en)
TRIMIS

Advanced Modelling Methodology for Bearing Chamber in Hot Environment

AMBEC

Advanced Modelling Methodology for Bearing Chamber in Hot Environment

Call for proposal: 
H2020-CS2-CFP06-2017-01
Link to CORDIS:
Objectives: 

The AMBEC project aims to develop a reliable experimentally validated methodology able to calculate heat transfer coefficients and fluid distribution (CFD) in different zones of bearing chamber. The methodology will be used for improvement of the design of compact bearing chambers in hot environment.

Proposed concept consists in combination of advanced CFD simulation and experimental investigation of fluid flows and heat transfer phenomena in bearing chamber. The advantages of the proposed methodology consist in:

  • More accurate determination of oil film thickness and, consequently, heat exchange conditions and heat fluxes along the perimeter of the bearing chamber. Numerical simulation of oil film formation and motion will take into account the combined action of forces of interphase interaction, gravity and centrifugal effects.
  • More accurate determination of heat exchange between air and oil film. This problem will be solved taking into account possible rupture of liquid film onto the drops, their crushing and coagulation.

These advantages fully meet call expectations, while proposed approaches and methodologies have been proven by AMBEC partners during previous extensive R&Ds.

Methodology: 

After project completion, the Topic Leader will obtain experimentally validated innovative methodology for analysis of heat transfer and fluid flows in the compact bearing chamber and recommendations for chamber design improvement. These outputs will feed the development of LP spool bearing chamber for UHPE Demonstrator for SMR aircraft in the frame of CS2 Engine ITD activities.

Application of AMBEC methodology for aircraft engine design will ensure less oil flow rate, which will lead to reduction of power consumption by oil pumps and thus overall fuel savings. This will give European aeronautical industry an opportunity to better compete at global market and will contribute to greening of EU aviation.

Institution Type:
Institution Name: 
European Commission
Type of funding:
Programme Other: 
JTI-CS2-2017-CFP06-ENG-01-15 Bearing chamber in hot environment
Lead Organisation: 

Science And Technology Center In Ukraine

Address: 
METALISTIV 7A
KYIV
03057
Ukraine
EU Contribution: 
€4,000
Partner Organisations: 

National Aerospace University "kharkiv Aviation Institute"

Address: 
17 Chkalova St.
KHARKIV
61070
Ukraine
EU Contribution: 
€316,125

Zaporozhye Machine-Building Design Bureau Progress State Enterprise Named After Academician A.g. Ivchenko

Address: 
Ivanova street 2
ZAPOROZHYE
69068
Ukraine
EU Contribution: 
€549,544

Motor Sich Jsc

Address: 
Motorobudivnykiv Avenue 15
Zaporizhzhya
69068
Ukraine
EU Contribution: 
€830,000
Technologies: 
Development phase: