Sorry, you need to enable JavaScript to visit this website.
An official website of the European UnionAn official EU website
English (en)

Advanced Steady and unsTeady distORtion sImulAtor


Advanced Steady and unsTeady distORtion sImulAtor

Call for proposal: 
Link to CORDIS:

Fully answering the requirements of topic JTI-CS2-2018-CfP09-LPA-01-59, the ASTORIA project aims at developing a demonstrated set of tools and methodologies in order to design and test devices replicating complex, steady and unsteady, total pressure and swirl combined distortion profiles with high fidelity in a test rig environment.

Software and methodologies will be developed that will enable the definition of tailored multi-component devices, based on extensive exploitation of CFD, reduced-order models and optimization, harnessing the potential offered by rapid prototyping. Steady and unsteady patterns design methodologies will be validated through extensive experimental reduced-scale testing in precisely controlled conditions.

The software toolset will be highly modular and flexible. The objective is to combine into a new multi-component distortion generator generic total pressure distortion generating screens and aerodynamic turning vanes assemblies, with limitless possibilities in vane shapes, distribution and size for complex swirl pattern replication.

Several assembly solutions are envisaged, which will allow to jointly rotate parts (swirl frame and base distortion) or, conversely, preserve a fixed baseline steady distortion pattern and limit periodic position variation to a subset of turning vanes and/or screen. The integrated toolset will provide an unprecedented capability for combined arbitrarily complex total pressure and swirl distortion simulation, including the minimization of the undesirable influence of the device and directly integrating mechanical and manufacturability into the design intent. It will also seamlessly allow to integrate the potential effect of the fan.

ASTORIA is specifically linked with LPA-IADP-WP1.1.3.6, will directly be applicable for specific fan designs to be tested within the SA²FIR rig and will serve the “DX2 Boundary Layer Ingestion” demonstrator, paving the way for new robust integrated engine/airframe design practices.

Institution Type:
Institution Name: 
European Commission
Type of funding:
Programme Other: 
JTI-CS2-2018-CfP09-LPA-01-59 - Fan inlet advanced distortion simulator
Lead Organisation: 

Centre De Recherche En Aéronautique

Avenue Jean Mermoz 30, Bât. Mermoz 1
EU Contribution: 
Partner Organisations: 

Institut Von Karman De Dynamique Des Fluides

Chaussee De Waterloo 72
1640 Rhode Saint Genese
EU Contribution: 

Numerical Mechanics Applications International Sa

EU Contribution: 
Development phase: