Skip to main content
European Commission logo

Aerodynamics and Sprays during TRansients of Gasoline Direct Injection Engines

France Icon
Geo-spatial type
Project website
Project Acronym
STRIA Roadmaps
Vehicle design and manufacturing (VDM)
Transport mode
Road icon
Transport policies
Transport sectors
Passenger transport,
Freight transport


Background & Policy context

Gasoline direct injection (GDI) is among the technologies with a strong potential for improving the efficiency of spark-ignition engines. Considering the evolution of pollutant regulations, transient phases will play an increasingly critical role. Recent research has also shown that transient phases are responsible for high particulate emission levels of GDI engines.

The exact reasons of this observation are poorly understood, and classical design techniques that have proved their adequacy for optimising stabilised GDI operating points do not allow mastering these issues.


In this context the objective of ASTRIDE is to contribute to a better understanding of the mixture preparation and the formation of liquid films during cold transients of internal combustion, gasoline direct injection (GDI) engines.

The work proposed by ASTRIDE aims at developing and validating breakthrough design tools that could contribute after the project to the emergence of GDI engines exhibiting soot particle production levels inside the cylinder that would be sufficiently low in order to avoid the negative impact in terms of cost and efficiency generated by the usage of soot particle filters in the exhaust.


The highly innovative work proposed by ASTRIDE is based on a combined usage of experimental techniques and Large-Eddy Simulation (LES) for studying transients in a single cylinder GDI engine, in a breakthrough approach as compared to classical techniques. This work will in particular profit from the innovative development of an analysis method of fast PIV velocity measurements for quantifying transient aerodynamics, and of a LES methodology for engine transients. This will be supported by experimental and modelling work concerning the characterisation of sprays generated by last generation multi-hole injectors, their impact on a wall, the formation and evolution of a film, as well as of the evaporation of a film in a simplified configuration representative of the GDI context.

The thus acquired understanding of the specificities of interactions between in-cylinder aerodynamics and the spray in GDI transients, and of their impact on the film formation and evolution, will be capitalised in the form of models for system simulation.


Parent Programmes
Institution Type
Research agency
Institution Name
L'Agence nationale de la recherche (The French National Research Agency)
Type of funding
Public (national/regional/local)


Lead Organisation
EU Contribution
Partner Organisations
EU Contribution


Contribute! Submit your project

Do you wish to submit a project or a programme? Head over to the Contribute page, login and follow the process!