Skip to main content
European Commission logo
TRIMIS

Ageing and efficiency Simulation & TEsting under Real world conditions for Innovative electric vehicle Components and Systems

PROJECTS
Funding
European
European Union
Duration
-
Status
Complete with results
Geo-spatial type
Other
Total project cost
€4 280 294
EU Contribution
€2 699 979
Project Acronym
ASTERICS
STRIA Roadmaps
Transport electrification (ELT)
Transport mode
Road icon
Transport policies
Decarbonisation,
Societal/Economic issues
Transport sectors
Passenger transport,
Freight transport

Overview

Call for proposal
FP7-SST-2012-RTD-1
Link to CORDIS
Background & Policy context

Following the Green Car Initiative (GCI) included in the European Economic Recovery Plan there is a high demand for electrification of transport in Europe. There are currently several concepts for FEV (fully electric vehicle) and HEV (hybrid electric vehicle) that support this electro-mobility demand. The development and improvement of the different concepts require a huge effort in analysis, design, implementation and testing and not to forget feeding back of experience, results and knowledge to new generations of Electric Vehicles.

Objectives

The ASTERICS Project's aim is to develop advanced modelling and testing tools and methods that will be the base for future developments of FEV & HEV trough all of Europe, contributing to the competitiveness in this sector, in all its aspects.

Methodology

Advanced modelling tools and testing procedures going from one-dimension to three dimensional approaches have a fundamental role to play in optimising the project. This is so during the earliest project phases for the energy dimensioning of FEV HEV as well as their energy management strategies, while reducing project development lead-time as well as build-up requirements for subsystems and their related control units. The research in this project will focus on the development and validation of numerical simulation tools, virtual prototyping and advanced physical testing procedures and on the standardization of such tools in order to:

  • Investigate solutions for improving the efficiency and performance of future generation EV and their constituent components and sub-systems that may be critical from the energy efficiency point of view. The development of these sub-systems is however excluded.
  • Assess the effect of different sub-systems solutions in terms of energy efficiency and related increase of autonomy on different specific real life driving cycles that will take into account traffic constraints, road slope evolution, etc.
  • Verify technological feasibility and economic viability of the advanced solutions proposed.

Funding

Parent Programmes
Institution Type
Public institution
Institution Name
The European Commission
Type of funding
Public (EU)

Results

Rapid development methods and tools for electric vehicle concepts

Electric vehicles (EVs) promise the greatest reduction in carbon dioxide (CO2) emissions of any other technology in the road transport sector. A comprehensive simulation and testing suite will make sure potential is realised quickly.

The EU and G8 leaders agreed in 2009 that CO2 emissions must be cut by 80 % by 2050 for global warming to stay below pre-determined 'safe' levels. This challenging overall reduction may require 95 % decarbonisation by the road transport sector. It is unlikely that improvements to conventional internal combustion engines in combination with the use of biofuels will be able to meet these targets.

EVs are the most promising technology to do so. However, rapid development and improvement of current concepts requires advanced modelling and testing tools. The EU-funded http://www.asterics-project.eu/ (ASTERICS) project is meeting this need with a simulation tool suite and testing procedures.

The technologies are expected to play a fundamental role in optimising energy dimensioning and energy management strategies in the earliest design phases. The target is increased efficiency and performance of EVs by at least 20 %. The tools will simultaneously enable a 50 % reduction in overall development time and testing efforts for EVs and components.

Work in the first period emphasised a model-based system engineering process and an overview of available modelling and testing environments as well as realistic driving cycles for EVs. Further research focused on the definition of use cases spanning the entire development life cycle of EVs.

Fundamental to the initial phase of work was a comprehensive analysis of EV-specific driving cycles, including extensive test runs of EVs in real environments. The research culminated in delivery of a driving cycle calculation tool. This enabled scientists to begin definition of specifications and requirements for accelerated testing of powertrain components as well as for integrated powertrain systems.

The ASTERICS team has set up the project website from which interested stakeholders can download all related articles, newsletters, leaflets, videos and other documents. In the end, the simulation and testing tools are expected to make a major contribution to the optimised design of EVs. Taking into account both the unique powertrain and use requirements of EVs, the tools should lead to high quality, reliable and energy-efficient EVs in half the development time currently required.

Partners

Lead Organisation
Organisation
Avl List Gmbh
Address
Hans-List-Platz, 8020 Graz, Austria
Organisation website
EU Contribution
€795 655
Partner Organisations
Organisation
Volvo Bus Corporation
Address
Fästningsvägen 1, 40508 Gothenburg, Sweden
EU Contribution
€255 711
Organisation
Gustav Klein Gmbh & Co. Kg
Address
Im Forchet 3, DN/A86956 Schongau, Germany
EU Contribution
€90 119
Organisation
Centro Ricerche Fiat - Societa Consortile Per Azioni
Address
Strada Torino, 50, 10043 ORBASSANO (TO), Italy
Organisation website
EU Contribution
€444 776
Organisation
Universita Degli Studi Di Firenze
Address
Piazza San Marco 4, 50121 Florence, Italy
Organisation website
EU Contribution
€197 573
Organisation
Siemens Industry Software Sas
Address
Avenue Morane Saulnier 13 Espace Velizy Immeuble Le Chavez, 92320 Chatillon, France
Organisation website
EU Contribution
€226 983
Organisation
Lms Imagine
Address
Place des Minimes 7, 42300 Roanne, France
Organisation website
EU Contribution
€0
Organisation
Siemens Industry Software Nv
Address
INTERLEUVENLAAN 68, 3001 LEUVEN, Belgium
EU Contribution
€93 563
Organisation
Thien Edrives Gmbh
Address
Millennium Park 11, 6890 Lustenau, Austria
EU Contribution
€112 998
Organisation
Fh Joanneum Gesellschaft Mbh
Address
Alte Poststrasse 149, 8020 Graz, Austria
EU Contribution
€307 805
Organisation
Univerza V Ljubljani
Address
KONGRESNI TRG 12, 1000 LJUBLJANA, Slovenia
Organisation website
EU Contribution
€174 796

Technologies

Technology Theme
Computer-aided design and engineering
Technology
EV component modelling tools
Development phase
Research/Invention

Contribute! Submit your project

Do you wish to submit a project or a programme? Head over to the Contribute page, login and follow the process!

Submit