Sorry, you need to enable JavaScript to visit this website.
An official website of the European UnionAn official EU website
English (en)
TRIMIS

ASSESSMENT OF ADDITIVE MANUFACTURING LIMITS FOR ECO-DESIGN OPTIMIZATION IN HEAT EXCHANGERS

AManECO

ASSESSMENT OF ADDITIVE MANUFACTURING LIMITS FOR ECO-DESIGN OPTIMIZATION IN HEAT EXCHANGERS

Call for proposal: 
H2020-CS2-CFP09-2018-02
Link to CORDIS:
Objectives: 

Selective Laser Melting (SLM) is key for improved design and production process of aviation parts. Applied to heat exchangers (HX), it could dramatically improve global eco‐efficiency through access to radically new designs and open horizons in terms of shape, weight, efficiency. Nevertheless, some questions need to be solved regarding capability of Additive Manufacturing (AM) to manufacture thin walls, small holes/gaps, low overhang angle, resulting surface roughness and mechanical strength.

AManECO aims to enhance knowledge of metal AM and, specifically, the capability of SLM process to manufacture thin layers and wall thickness with adequate surface finish using AlSi7Mg0.6 and INCO 718 materials. In particular, to investigate aerothermal and mechanical performance of thin walls, to predict them in the design of AM-HX and consequently, be able to optimize the HX´s design process in an Eco-friendly way after knowing the limits of the metal AM technology.

For this purpose, testing samples will be designed and manufactured to characterize in terms of surface properties, pressure resistance and gas tightness evaluation, equivalent stiffness and aerothermal properties. Besides, numerical studies based on FEM and CFD simulations will be done. Then, a representative design of HX based on the initial SOA of AM limitations will be optimized with the gained knowledge.

These designs, before and after optimization, will be processed and characterized. Then, a Life Cycle Inventory (LCI) database will be created to evaluate the ECO potential of the innovative HX.

AManECO will enable to:

  • Increase efficiency of HX up to 10%.
  • Reduce the overall of HX manufacturing costs by 30%.
  • Reduce material waste and scraps by 15 % per component.
  • Reduce time-to market up to 1 month.

A multidisciplinary consortium, with experts in HX design and AM (TUHH, LORTEK, FIT), samples characterization (CIDETEC, MU-ENG), numerical simulation (EPSILON, TUHH), and life cycle assessment and eco-design (CTME), has been defined.

Institution Type:
Institution Name: 
European Commission
Type of funding:
Lead Organisation: 

Lortek S Coop

Address: 
Arranomendia Kalea 4 A
20240 Ordizia
Spain
EU Contribution: 
€490,250
Partner Organisations: 

Epsilon Ingenierie

Address: 
RUE TARFAYA BATIMENT B612
31400 TOULOUSE
France
EU Contribution: 
€80,063

Fit Production Gmbh

Address: 
AM GROHBERG 1
92331 LUPBURG
Germany
EU Contribution: 
€301,588

Mondragon Goi Eskola Politeknikoa Jose Maria Arizmendiarrieta S Coop

Address: 
LORAMENDI 4
20500 ARRASATE
Spain
EU Contribution: 
€118,119

Technische Universitat Hamburg

Address: 
Am Schwarzenberg Campus 1
21073 Hamburg
Germany
EU Contribution: 
€350,375

Fundacion Centro Tecnologico De Miranda De Ebro

Address: 
CALLE MONTANANA PARCELAS R60 Y R61
09200 MIRANDA DE EBRO BURGOS
Spain
EU Contribution: 
€80,883

Fundacion Cidetec

Address: 
PASEO MIRAMON 196 PARQUE TECNOLOGICO DE MIRAMON
20014 SAN SEBASTIAN
Spain
EU Contribution: 
€79,956
Technologies: 
Development phase: