Skip to main content
European Commission logo
TRIMIS

CROR Engine Debris Impact SHielding. Design, manufacturing, simulation and Impact test preparation

PROJECTS
Funding
European
European Union
Duration
-
Status
Complete
Geo-spatial type
Other
Total project cost
€499 950
EU Contribution
€499 950
Project Acronym
REDISH
STRIA Roadmaps
Vehicle design and manufacturing (VDM)
Transport mode
Airborne icon
Transport policies
Safety/Security
Transport sectors
Passenger transport,
Freight transport

Overview

Call for proposal
H2020-CS2-CFP01-2014-01
Link to CORDIS
Background & Policy context

New, eco-efficient aircrafts are challenged by a demand to significantly reduce the CO2 and NOx emission. To achieve these goals, the topic manager is exploring new configurations for integrating advanced engines and propulsion concepts to the aircraft. Most of such promising concepts as the CROR-engine, Boundary Ingestion Layer (BIL), Ultra High Bypass Ratio engines (UHBR), multiple fan cannot be targeted simply by replacing engines of the current generation, but require a substantial change of the principle aircraft configuration.

In case of un-ducted engine architecture as the CROR, the rearward shift of the engines away from the wing provides additional advantages in cabin noise and passenger comfort and safety improvement.

Regarding the safety, main issue is the CROR engine debris that can be release with high energy when there is a failure. It is mandatory to develop innovative solutions for panels and shielding able to shield and reduce damage at impact, to secure the airframe integrity, so that aircraft can make safe continuation of flight and landing after engine burst event.

Objectives

The goal of REDISH is the development and maturation of innovative shielding able to sustain impacts from high and low energy debris caused by CROR engine burst. A coupled experimental-numerical development approach at two structural scales (laminate/panel and component) is proposed that starts from a large pool of possible configurations that will be down selected in successive analysis steps of increasing detail. Virtual testing by means of high-fidelity simulation tools developed by the consortium will be used to decrease the need for costly physical testing as much as possible and accelerate the shielding development process. The specimens to be manufactured and tested are the ones strictly necessary to validate the numerical simulations and assure the highest educated selection of the actual solution to be implemented for CROR Engine Debris Impact Shielding.

Funding

Parent Programmes
Institution Type
Public institution
Institution Name
European Commission
Type of funding
Public (EU)
Specific funding programme
H2020-EU.3.4.5.4.

Partners

Lead Organisation
Organisation
Fundacion Imdea Materiales
Address
Calle Eric Kandel 2 Parque Cientifico Y Tecnologico Tecnogetafe, 28906 Getafe, Spain
EU Contribution
€281 850
Partner Organisations
Organisation
Fundacion Para La Investigacion, Desarrollo Y Aplicacion De Materiales Compuestos
Address
Avda Rita Levi Montalcini (Tecnogetafe) 29, 28906 Getafe, Spain
Organisation website
EU Contribution
€218 100

Technologies

Technology Theme
Aircraft operations and safety
Technology
Debris shielding
Development phase
Research/Invention

Contribute! Submit your project

Do you wish to submit a project or a programme? Head over to the Contribute page, login and follow the process!

Submit