Skip to main content
European Commission logo
TRIMIS

Design of Advanced Antenna and Multi-Sensor Hybrid Receiver for Machine Control in Harsh Environment

PROJECTS
Funding
European
European Union
Duration
-
Status
Complete with results
Geo-spatial type
Other
Total project cost
€1 537 955
EU Contribution
€996 040
Project Acronym
ADVANSYS
STRIA Roadmaps
Network and traffic management systems (NTM)
Transport mode
Multimodal icon
Transport sectors
Passenger transport,
Freight transport

Overview

Call for proposal
FP7-GALILEO-2011-ENTR-1
Link to CORDIS
Objectives

Machine Control is the largest segment of the global high precision (better than 1m RMS) GNSS market. Machine Control applications range from Precision Agriculture to Land and Offshore Construction, relying on GNSS due to its global availability and easiness to deploy and operate. Current GNSS-only technology, although successful suffers fundamental limitations that make it fit only for application in rather benign, open-sky environment. Overcoming these limitations is mandatory to extend the addressable market to application in harsher environments such as forestry and open-mining. ADVANSYS will address this challenge leveraging multi-antenna beamforming technology and multi-sensor fusion in the development of the prototype of an affordable and manufacturable high-sensitivity high-resilience Hybrid receiver concept comprising antenna, GNSS receiver and dead-reckoning sensors.

Funding

Parent Programmes
Institution Type
Public institution
Institution Name
The European Commission
Type of funding
Public (EU)
Specific funding programme
FP7-TRANSPORT

Results

Machine control in stormy weather

Heavy machinery is often positioned remotely yet most systems are designed for benign weather and environments. A novel receiver concept promises to put the EU in the driver’s seat in an increasingly competitive and lucrative market.

Global Navigation Satellite Systems (GNSS) are systems of orbiting satellites and ground stations designed to pinpoint the geographic location of a receiver anywhere in the world. GNSS receivers are the user's interface to any GNSS and are critical to machine control. In fact, machine control is the largest segment of the global high-precision (on the order of less than a metre) GNSS market.

Although machine control applications include harsh environments associated with forestry, surface mining and off-shore construction, current receiver systems are designed with clear blue skies in mind. The EU-funded project 'Design of advanced antenna and multi-sensor hybrid receiver for machine control in harsh environment' (ADVANSYS) addressed this key limitation for a European lead position in an increasingly competitive sector.

Scientists developed an affordable, highly sensitive and resilient hybrid receiver concept. It exploits multi-antennae beam-forming technology (to reduce interference and transmit/receive a beam in the desired direction), a GNSS receiver and cost-effective inertial navigation system sensors. The latter are employed widely on ships, aircraft and spacecraft to enable the calculation of position, attitude and velocity without external reference using dead reckoning. Researchers imparted redundancy and hybridisation with vision-aided inertial navigation (VINS). VINS complements inertial measurements with visual features and landmarks for more accurate positioning estimates.

The novel technology will ensure a leading market position for the EU in machine control particularly in non-benign environments. This growing and profitable market sector will be an important addition to the EU portfolio.

Partners

Lead Organisation
Organisation
Septentrio Nv
Address
Interleuvenlaan 15G, 3001 Leuven, Belgium
EU Contribution
€425 221
Partner Organisations
Organisation
Satimo Industries Sas
Address
Avenue De Norvege 17, 91140 Villebon Sur Yvette, France
Organisation website
EU Contribution
€272 569
Organisation
Satimo Industries Sas
Address
Avenue De Norvege 17, 91140 Villebon Sur Yvette, France
Organisation website
EU Contribution
€115 092
Organisation
Deutsches Zentrum Fr Luft Und Raumfahrt E.v
Address
Linder Hoehe, 51147 KOELN, Germany
Organisation website
EU Contribution
€2 415 610
Organisation
Deutsches Zentrum Fr Luft Und Raumfahrt E.v
Address
Linder Hoehe, 51147 KOELN, Germany
Organisation website
EU Contribution
€361 185
Organisation
The University Of Nottingham
Address
University Park, Nottingham, NG7 2RD, United Kingdom
EU Contribution
€94 542

Technologies

Technology Theme
Aircraft design and manufacturing
Technology
Guidance, Navigation & Control technologies
Development phase
Validation

Contribute! Submit your project

Do you wish to submit a project or a programme? Head over to the Contribute page, login and follow the process!

Submit