Skip to main content
European Commission logo
TRIMIS

GURNEY FLAP ACTUATOR AND MECHANISM FOR A FULL SCALE HELICOPTER ROTOR BLADE

PROJECTS
Funding
European
European Union
Duration
-
Status
Complete with results
Geo-spatial type
Other
Total project cost
€660 615
EU Contribution
€371 063
Project Acronym
PT656
STRIA Roadmaps
Vehicle design and manufacturing (VDM)
Transport mode
Airborne icon
Transport policies
Societal/Economic issues,
Environmental/Emissions aspects,
Safety/Security
Transport sectors
Passenger transport,
Freight transport

Overview

Call for proposal
SP1-JTI-CS-2010-04
Link to CORDIS
Objectives

Microtecnica SrL (MT) have brought together industry leading expertise to support the design and development of a full scale Active Gurney Flap (AGF) system. The team have a combination of relevant experience in blade actuation across a range of technologies together with significant capabilities in fundamental engineering analysis to support a comprehensive review of potential solutions. The proposal reflected the joint desire of offering a risk managed baseline approach as well as ensuring all potential candidate solutions are assessed as part of the initial development task.

The consortium was lead by MT who provide the technical and programme management and the detail design and manufacture of the wind tunnel and whirl test hardware. MT was supported by Microtecnica Actuation Technologies (MAT), University of Bristol and the “Politecnico di Torino” based in Turin. The team ensured a balance of technical depth together with a commitment and capability to exploit technology for commercial gain.

Funding

Parent Programmes
Institution Type
Public institution
Institution Name
European Commission
Type of funding
Public (EU)
Specific funding programme
JTI-CS - Joint Technology Initiatives - Clean Sky
Other Programme
JTI-CS-2010-4-GRC-01-005 Gurney flap actuator and mechanism for a full scale helicopter rotor blade

Results

Executive Summary:

The objectives of the work plan had been directed to achieving a risk mitigated solution to AGF System in order to develop a product that could be adopted on a production rotorcraft.

The AGF development program followed key deliverables that can be summarised into 4 activities: requirements development, product design, hardware supply testing and evaluation.

The programme had a primary cycle of the 4 activities culminating in the delivery of the first prototype at T0 + 17 months. The cycle had been repeated picking up the lessons from the testing and evaluation with wind tunnel hardware deliveries in T0 +24 months. Output from the wind tunnel testing provided the input for the final hardware (T0 +30 months) for whirl tower testing.

The management of technical risk had been supported by a two tier approach. The primary risk mitigation had been achieved through a balanced approach to analytical and empirical techniques. The consortium used the most advanced predictive engineering tools using finite element techniques for magnetic, stress and thermal analysis. Equally, the electronics and system performance had been extensively analysed before hardware production. Previous experience in fact has shown that the most robust approach was to combine these analysis techniques with small scale breadboard evaluations of elements of the design. These were particularly useful for phenomenon which typically are non-linear in nature such as wear mechanisms and threshold effects like friction.

The consortium had been chosen with a balance of skills and capabilities. The involvement of the University of Bristol was of particular value for both its broad analytical capabilities together with a proven record in rapid prototype and test methods. The involvement of the Politecnico di Torino was in thermal and performance analysis of the actuator, basing on their experience in the specific areas of flight control actuation systems, mechatronics.

Technical risk was underpinned by a choice of technology that can be reconfigured to achieve potential requirements growth. There is intrinsically an element of uncertainty in the final needs of the product. In order to fix this uncertainty, one of the purposes of wind tunnel test was to confirm the operating loads while the aim of the spin rig test was to verify the capability of the system to operate in high centrifugal acceleration environment.

In fact, it should be noted that during the execution of the program, the final Customer, Agusta Westland (AW), had communicated their intention to promote the Active Gurney Flap to an experimental flight program. This caused the responsibility of the Gurney Flap structural parts to be taken by AW. Discussions had been conducted between MT and AW in order to anticipate the demonstration of the actuator performances in high-G environment before the whirl tower test. The spin rig test activities had been then performed to verify the capability of the actuator and its relevant control electronics to operate installed in a representative acceleration environment.

Partners

Lead Organisation
Organisation
Microtecnica Srl
Address
PIAZZA ARTURO GRAF 147, 10126 TORINO, Italy
Organisation website
EU Contribution
€159 538
Partner Organisations
Organisation
Microtecnica Actuation Technologies Limited
Address
"COOMBE LODGE, BOURNE LANE", BRISTOL, BS40 7RG, United Kingdom
EU Contribution
€65 167
Organisation
Politecnico Di Torino
Address
Corso Duca Degli Abruzzi, 10129 Torino, Italy
Organisation website
EU Contribution
€24 090
Organisation
University Of Bristol
Address
BEACON HOUSE QUEENS ROAD, BRISTOL, BS8 1QU, United Kingdom
Organisation website
EU Contribution
€122 268

Technologies

Technology Theme
Noise testing, modelling and reduction
Technology
Tools for noise and vibration reduction
Development phase
Validation
Technology Theme
Aircraft design and manufacturing
Technology
Aircraft design model
Development phase
Validation

Contribute! Submit your project

Do you wish to submit a project or a programme? Head over to the Contribute page, login and follow the process!

Submit