Sorry, you need to enable JavaScript to visit this website.
An official website of the European UnionAn official EU website
English (en)

HIGH speed civil Tilt Rotor wInd tunnel Project


HIGH speed civil Tilt Rotor wInd tunnel Project

Call for proposal: 
Link to CORDIS:

The aerodynamic configuration of the Next Generation Civil Tilt Rotor needs to be characterized at high speed by a dedicated wind tunnel test campaign.

HIGHTRIP will design a new model based on NICETRIP design philosophy, re-using the new (instrumented) NEXTTRIP empennages. If complete re-use is not feasible, basic design, balances and remote controls will be re-used to limit the costs. Consequently, the exact model scale will result from sizing NEXTTRIP empennage to the NGCTR-TD geometry.

To provide full scale Reynolds number data and perform aerodynamic characteristics analysis at high speeds and full-scale conditions, extrapolation to full scale Reynolds numbers will be done by CFD.

The HIGHTRIP project proposes to use the ONERA S1MA large wind tunnel facility, to enable the application of remotely controlled surfaces and nacelles with small wind tunnel interference covering the complete Mach envelop. Within the FP6 project NICETRIP a 1/5th scale full-span, powered wind tunnel model has been designed and tested. This model will be reused and equipped with two new T- and V- shaped empennage configurations based on the NGCTR-TD and tested at low speed conditions within the project NEXTTRIP, managed by NLR. The design and manufacturing of the new NEXTTRIP empennages and especially their remote controls and instrumentation will envisage usage for higher speeds in the HIGHTRIP project.

HIGHTRIP partners, NLR, ILOT, PW and ST will work together during 36 months for a total grant request of 3,495,243€, to design and manufacture new fuselage and new wing in the HIGHTRIP model, based on the NEXTTRIP and NICETRIP parts.

NLR will subcontract the non-powered high-speed wind tunnel test to ONERA-S1MA, resulting in a data package (on model scale) corrected for wind tunnel effects. NLR will analyse the wind tunnel data and perform the required extrapolation to the full-scale Reynolds numbers to support the topic manager for full scale developments of the NGCTR TD.

Institution Type:
Institution Name: 
European Commission
Type of funding:
Programme Other: 
JTI-CS2-2017-CfP07-FRC-01-16 Full scale High speed aerodynamics characteristics of the Civil Tilt Rotor
Lead Organisation: 

Stichting Centrum Voor De Ontwikkeling Van Transport En Logistiek In Europa

Van Nelleweg 1
3044 BC Rotterdam
EU Contribution: 
Partner Organisations: 

Dariusz Dabkowski

39-300 MIELEC
EU Contribution: 

Instytut Lotnictwa

Krakowska 110/114
02 256 Warszawa
EU Contribution: 

Szeliga Gregorz

39 300 MIELEC
EU Contribution: 
Development phase: