Skip to main content
European Commission logo
TRIMIS

Modelling plating morphology in lithium-ion batteries for enhanced safety

PROJECTS
Funding
European
European Union
Duration
-
Geo-spatial type
Infrastructure Node
Total project cost
€0
EU Contribution
€206 888
Project Acronym
MoreSafe
STRIA Roadmaps
Transport electrification (ELT)
Transport mode
Multimodal icon
Transport policies
Environmental/Emissions aspects
Transport sectors
Passenger transport,
Freight transport

Overview

Call for proposal
HORIZON-MSCA-2021-PF-01
Link to CORDIS
Background & Policy context

The EU aims to have at least 30 million zero-emission vehicles, primarily powered by lithium-ion batteries, on the roads by 2030. However, several fundamental scientific issues related to the safety of these batteries need to be addressed. There is currently a lack of control-oriented models for predicting the internal phenomena that can trigger thermal runaway. The EU-funded MoreSafe project will develop a comprehensive physics-based approach that will adequately incorporate a highly accurate description of battery electrochemistry and the accompanying subtle lithium plating phenomenon. The method will allow fast and accurate battery safety state prediction and analysis as well as seamless integration into a safety-guaranteed battery management system.

Objectives

EU will aim to have at least 30 million zero-emission vehicles by 2030, primarily powered by the current energy storage technology of choice - lithium-ion batteries. Despite remarkable achievements in developing control strategies over recent decades, many fundamental scientic issues underpinning the safety of these batteries remain elusive, due to a lack of control-oriented models for predicting the internal phenomena that can trigger internal short circuits and the consequent thermal runaway. In this proposal, we document a wholistic new physics-based modelling approach, which adequately incorporates a highly accurate description of battery electrochemistry as well as the accompanying subtle lithium plating phenomenon. It will allow reliable prediction of the occurrence of safety accidents subject to battery operational conditions and the seamless integration into a safety-guaranteed battery management system. As an MSCA-PF fellow, Dr. Yicun Huang will receive crucial training at the Chalmers University of Technology and engage in detailed battery modelling works which span the areas of computational materials and electrical engineering. The interplay between the two areas will spark an innovative and productive throughput, including 1) a multiphase electrochemical model under normal battery operations, 2) a high-fidelity materials model for the growth morphology of lithium plating, and 3) control-oriented models for battery safety assessment. The result of this project will include: a ground-breaking multiple-model framework enabling fast and accurate battery safety state prediction and analysis; a new interdisciplinary research product amalgamating materials modelling and control algorithms; outreach and dissemination to crucial target audiences; and a solid foundation for a safety-guaranteed battery management system intended to revolutionise electric vehicles.

Funding

Specific funding programme
HORIZON.1.2 - Marie Skłodowska-Curie Actions (MSCA)
Other Programme
HORIZON-MSCA-2021-PF-01-01 MSCA Postdoctoral Fellowships 2021

Partners

Lead Organisation
EU Contribution
€206 887

Technologies

Technology Theme
Electric vehicle batteries (and energy management)
Technology
Lithium-ion batteries with novel anode/cathode materials
Development phase
Research/Invention

Contribute! Submit your project

Do you wish to submit a project or a programme? Head over to the Contribute page, login and follow the process!

Submit