Skip to main content
European Commission logo
TRIMIS

Molten-carbonate fuel Cells for Waterborne APplication

PROJECTS
Funding
European
European Union
Duration
-
Status
Complete with results
Geo-spatial type
Other
Total project cost
€15 947 620
EU Contribution
€9 899 413
Project Acronym
MC-WAP
STRIA Roadmaps
Transport electrification (ELT)
Vehicle design and manufacturing (VDM)
Transport mode
Waterborne icon
Transport sectors
Passenger transport,
Freight transport

Overview

Call for proposal
FP6-2004-HYDROGEN-1
Link to CORDIS
Background & Policy context

The use of fuel cells for marine applications constitutes a new market. Existing fuel cells (FC) for ships are only available on a prototype status and at low power. However, major ship manufacturers worldwide have announced commercialisation of fuel-cell ships in the next decade and most of them are working on this. These commitments have initialised a significant process of research and development on fuel-cell-driven boats and their components such as the fuel-cell stack itself and the necessary auxiliaries such as compressors, reformers, etc.

The market share of vessels hosting alternative auxiliary power units (APUs) for the year 2008 is estimated to be about 3%, rising to 10% in 2015-2020; most market forecasts envisage a growth in the use of alternative drive systems. The development of an APU may pave the way for the introduction of fuel cells for propulsion.

Since fuel cells can provide electrical energy with much higher efficiency than the generator in ICE (internal combustion engine) vehicles, APUs that convert diesel to electrical energy in order to cope with the ever increasing electric power demand in modern ships are an attractive option. APUs can be an early application, where the vehicle manufacturer and supplier industry can build up competence, experience and manufacturing capability, before later taking the next step where fuel cells are used as a prime power unit.

Objectives

MC-WAP is aimed at the study of the application of Molten Carbonate Fuel Cells technology on-board large ships, as Ro-Pax, Ro-Ro and Cruise, and fast vessels.

This ambitious goal perfectly fits the requirements of the Joint Call FP6-2004-Hydrogen regarding an IP instrument to cover Generic RTD on components and systems development and integration for fuel cell systems for auxiliary power units (APUs) in the power range100kW to 500kW for ships.

This challenge has never been attempted before on such a large scale and with a molten carbonate (MC) fuel cell technology.

In order to achieve this ambitious target the project will develop, during its five years of duration, an extensive research activity and a strong experimental phase in order to improve performances of the 'new' energy technology of MC cells enabling and making real their application on board.

Methodology

The work programme includes the following tasks:

  • the improvement of the performance of MC fuel cells and of their components, to allow an efficient, reliable and safe use of them on-board;
  • the improvement of the performance of the reformer technology and of its components, to allow an efficient, reliable and safe application in marine conditions;
  • the achievement of the best integration between the MC fuel cells and the reformer;
  • the design, construction, installation onboard and testing of a 500 kWe auxiliary power unit, powered by molten-carbonate fuel cells and fuelled by diesel oil;
  • the definition and design of a new lay-out for one or more selected typologies of ships, in which the traditional diesel generators for auxiliary power will be (entirely or partially) substituted by FC systems (APU) fuelled by diesel oil, mainly characterised by efficiency, safety and reliability, and perfectly integrated with all other plants, systems and facilities onboard.

Funding

Parent Programmes
Institution Type
Public institution
Institution Name
European Commission
Type of funding
Public (EU)

Results

MC-WAP results after four years are briefly presented below:

  • SotA in MC-FC rules and in Fuel Cells rules in marine applications;
  • SotA in desulphurisation and fuel reforming in marine applications;
  • Set of data concerning power profiles expected on board and needs by ships’ auxiliary plants;
  • Set of data concerning expected operating conditions on board for the Fuel Cells (motions, vibrations and environmental conditions);
  • Selection of Diesel Oil for the APU development;
  • Partners agreement on preliminary APU architecture, including FC and FPM schemes;
  • Extensive tests on existing on-shore 500kW Research Plant in Marmara research centre (Turkey) and data analysis;
  • Design and optimisation activities for FCM and FPM;
  • Remarkable volume and weight savings;
  • Final design of target MCFC APU power and architecture;
  • Identification of sites for FCM and FPM development;
  • Contacts and project promotion for the selection of the ship on which to install and test the APU – solution identified for a hired ship, interest expressed by one important ship-owner;
  • Dissemination/Training activities.

Partners

Lead Organisation
Organisation
Cetena S.p.a. - Centro Per Gli Studi Di Tecnica Navale
Address
Via Ippolito d'Aste 5, 16121 GENOVA, Italy
Organisation website
Partner Organisations
Organisation
Promeos Gmbh
Address
Am Weichselgarten 21, ERLANGEN, Germany
Organisation website
EU Contribution
€0
Organisation
Oel-Warme-Institut Gmbh
Address
Kaiserstrasse 100, HERZOGENRATH, Germany
Organisation website
EU Contribution
€0
Organisation
Politecnico Di Torino
Address
Corso Duca Degli Abruzzi, 10129 Torino, Italy
Organisation website
EU Contribution
€0
Organisation
Türkiye Bilimsel Ve Teknik Arastirma Kurumu
Address
Ataturk Bulvari 221, kavaklidere, 6100 ANKARA, Turkey
Organisation website
EU Contribution
€0
Organisation
Adrop Feuchtemesstechnik Gmbh
Address
Kurgartenstrasse 59, FUERTH, Germany
Organisation website
EU Contribution
€0
Organisation
Friedrich-Alexander-Universitaet Erlangen Nuernberg
Address
Schlossplatz 4, 91054 Erlangen, Germany
Organisation website
EU Contribution
€0
Organisation
Vysoka Skola Chemicko-Technologicka V Praze
Address
TECHNICKA 5, 166 28 PRAHA, Czechia
Organisation website
EU Contribution
€0
Organisation
Turbec R&d Ab
Address
Skane Ian, 21512 MALMO, Sweden
Organisation website
EU Contribution
€0
Organisation
Technische Universitat Bergakademie Freiberg
Address
Akademiestrasse 6, FREIBERG, Germany
Organisation website
EU Contribution
€0
Organisation
Ansaldo Fuel Cells S.p.a
Address
Corso Perrone 25, GENOVA, Italy
Organisation website
EU Contribution
€0
Organisation
Johnson Matthey Fuel Cells Ltd
Address
2-4 Cockspur Street, Trafalgar Square, LONDON, United Kingdom
Organisation website
EU Contribution
€0
Organisation
Fincantieri - Cantieri Navali Italiani S.p.a.
Address
Via Genova, l, 34121 TRIESTE, Italy
Organisation website
EU Contribution
€0
Organisation
National Technical University Of Athens
Address
Heroon Polytechniou 9 (polytechnic campus), 15780 ZOGRAFOS, Greece
Organisation website
EU Contribution
€0
Organisation
Rina S.p.a.
Address
Via Corsica 12, 16128 Genova, Italy
Organisation website
EU Contribution
€0
Organisation
Tecnimont Kt Spa
Address
Viale Castello Della Magliana 75, ROMA, Italy
Organisation website
EU Contribution
€0

Technologies

Contribute! Submit your project

Do you wish to submit a project or a programme? Head over to the Contribute page, login and follow the process!

Submit