Overview
PADICTON answers the scope of JTI-CS2-2018-CFP09-AIR-02-75 call on the topic “Design Against Distortion”. The high-level challenge PADICTON project will be addressing is to develop accurate and functional distortion prediction models for Additive Manufacturing of polymeric and composite parts that can be utilised in conjunction with other design tools to produce parts adjusted to account for distortion effect.
The efforts will focus on Fused Filament Fabrication, with or without fibre reinforcement, and the new powder-bed type process, ThermoMELT.
The project will aim at developing a high-fidelity reference process simulation method for FFF and ThermoMELT for the materials of primary interest to the Topic Manager. In parallel, a rapid process simulation methodology will be sought.
While the first method will encompass detailed consideration of coupled thermal-chemical-mechanical analysis for the determination of residual stress and distortion, the low fidelity model will be based on the “inherent strain” analysis method, backed with experimental characterisation and validation activities.
State of the art AM equipment will be utilised with capability to alter the processing parameters and an innovative inline monitoring system will be realised to assess the produced part as it is being built. Once the analysis methods are in place the distortion prediction capabilities will be further utilised to enhance the part design by incorporating the risk of distortion. The traditional part optimisation tasks (shape or topology) will consider the risk of distortion as an extra parameter.
These developments will be implemented in a seamless Computer Aided Engineering (CAE) environment, initially based on the existing CAE platform available to PADICTON consortium. At a next step, the capability to incorporate the developed modules with different s/w platforms will be considered.
Overall, PADICTON will advance its technologies from TRL3 up to TRL5 and potentially reach TRL6.