Skip to main content
European Commission logo

Reduced Order Modeling & Optimization: (Constrained) Proper Orthogonal Decomposition (C)POD based surrogates for aircraft design

European Union
Geo-spatial type
Total project cost
€59 946
EU Contribution
€44 959
Project Acronym
STRIA Roadmaps
Vehicle design and manufacturing (VDM)
Transport mode
Airborne icon
Transport policies
Societal/Economic issues,
Environmental/Emissions aspects
Transport sectors
Passenger transport,
Freight transport


Call for proposal
Link to CORDIS

To meet the ACARE 2020 objectives, new green innovative A/C configurations were investigated. Following preparation of preliminary layout configuration for each green aircraft, optimisation needed to be performed so as to help reaching improvements in the design solution, but also assess key factors and trades and point out innovative design options. In this framework, the conjunction of mature high-fidelity CFD analysis, HPC facilities, and the most advanced optimisation algorithms was mandatory so as to maintain the computational effort within feasible limits. In this respect, the present proposal answered topic JTI-CS-2009-1-GRA-05-004, dedicated to the development of the high-performance tools that will allow the efficient aerodynamic design of new configurations.

An adequate and general answer to optimisation based on computationally expensive analysis lies in the exploitation of surrogate models in lieu of the expensive analysis results, i.e. Surrogate-Based Optimization. However, the performance of such methods was known to be largely dependent on the following key elements:

  • the underlying optimization algorithm(s),
  • the surrogate model(s),
  • the training,
  • the surrogate model(s) management scheme.

The present topic focused on the second element to be handled by Proper Orthogonal Decomposition (POD). Cenaero possessed the expertise and critical technologies to tackle all these aspects in a coherent way to take a leap forward and make POD techniques truly efficient in an industrial setting. Cenaero proposed to implement and demonstrate on a GRA representative case an online (i.e. dynamic) non-intrusive (Constrained) POD to perform the space reduction of the high-fidelity aerodynamic model, tackling the challenge of snapshot selection through innovative capture/recapture Design of Experiments and based on the most efficient generic interpolators for the reconstruction in the low-dimensional space.


Parent Programmes
Institution Type
Public institution
Institution Name
European Commission
Type of funding
Public (EU)
Specific funding programme
JTI-CS - Joint Technology Initiatives - Clean Sky
Other Programme
JTI-CS-2009-1-GRA-05-004 Pod techniques


Lead Organisation
Centre De Recherche En Aéronautique
Avenue Jean Mermoz 30, Bât. Mermoz 1, / GOSSELIES, Belgium
Organisation website
EU Contribution
€44 959
Partner Organisations
EU Contribution


Technology Theme
Aircraft design and manufacturing
Improved aerodynamic design tools
Development phase

Contribute! Submit your project

Do you wish to submit a project or a programme? Head over to the Contribute page, login and follow the process!