Skip to main content
European Commission logo
TRIMIS

Supersonic Transition Control

PROJECTS
Funding
European
European Union
Duration
-
Status
Complete with results
Geo-spatial type
Infrastructure Node
Total project cost
€2 929 999
EU Contribution
€1 600 000
Project website
Project Acronym
SUPERTRAC
STRIA Roadmaps
Vehicle design and manufacturing (VDM)
Transport mode
Airborne icon
Transport sectors
Passenger transport,
Freight transport

Overview

Call for proposal
FP6-2003-AERO-1
Link to CORDIS
Background & Policy context

Reducing the extent of turbulent flow by delaying laminar-turbulent transition on an aircraft wing is of considerable practical interest because it reduces the friction drag. In supersonic flow, it also contributes towards satisfying the strict requirements on emission and noise. In this project, fundamental, numerical and experimental investigations were carried out for evaluating the capabilities of several control techniques on supersonic civil aircraft wings.

Objectives

The general objectives of the SUPERTRAC project were to explore the possibilities of skin friction drag reduction on supersonic aircraft wings by delaying laminar-turbulent transition.

The following laminar flow techniques were tested:

  • micron-sized roughness elements;
  • suction at the wall (Laminar Flow Control); and
  • pressure gradient optimisation (Natural Laminar Flow).

In addition, the problem of preventing leading edge contamination was addressed.

To support these investigations, three models will be used: two 'physical' models with a simple geometry, which will be tested in supersonic wind tunnels, and one 'numerical' (and more realistic) model, which will be used for computations only.

At the end of the project, much original information will be available:

  • experimental data based on the effects of suction, micron-sized roughness elements and anti-contamination devices;
  • advanced numerical tools for the design of these control systems;
  • statements concerning the efficiency of the various control techniques investigated; and
  • definition of the best 3D wing shape and estimation of the benefits.
Methodology

The project was divided into six Work Packages.

In Work Package 1 (Specifications), the industrial partners provided a quantitative definition of the objectives, as well as the preliminary definition of a fully 3D wing, which was used as a reference shape ('numerical' model).

The objective of Work Package 2 was to define a simple model (swept wing of constant chord) equipped with micron-sized roughness elements and anti-contamination devices. This model was manufactured and tested in the S2 wind tunnel of the Modane-Avrieux ONERA centre.

Work Package 3 ran in parallel with Work Package 2. Another swept wing of constant chord, equipped with a suction panel in the leading edge region, was designed, manufactured and tested in the RWG wind tunnel of DLR Göttingen.

Work Package 4 used the 'numerical' model defined in Work Package 1. The objectives were:

  • to numerically investigate the concept of Natural Laminar Flow Control by shape optimisation; and
  • to analyse the compatibility of the different control techniques, in particular those of Work Packages 2 and 3. This will result in the definition of the best compromise for skin friction drag reduction.

The results of Work Packages 2 to 4 will be summarised in Work Package 5 by the industrial partners, who will provide a quantification of the benefits and recommendations for practical applicability to future supersonic aircraft wings.

Work Package 6 is devoted to the management and the exploitation of the project.

Funding

Parent Programmes
Institution Type
Public institution
Institution Name
European Commission
Type of funding
Public (EU)

Results

SUPERTRAC provided information of practical/industrial interest concerning the possibilities of laminar flow control at supersonic speeds. Some of them are extrapolations of results already established in the transonic regime. As a final achievement of the project, the 'best' supersonic 3D wing has been defined and the expected benefits (in term of drag and fuel consumption reduction) have been estimated. It is clear that for the large sweep angle wing considered here, NLF alone is not sufficient for obtaining significant skin friction gains. However the application of a small amount of suction makes it possible to increase the laminar flow extent in a significant manner. Of course, many technological problems, such as the compatibility with leading edge high lift devices or the effect of surface imperfections need to be studied. These issues were out of the scope of the present project but could be addressed in future projects dealing with laminarity at high speed.

Innovation aspects

When SUPERTRAC started, there were practically no published results concerning the possibilities to laminarize a supersonic wing. Therefore a large part of the numerical and experimental studies performed in the framework of the project can be considered as innovative.

Technical Implications

The transition control by MSR is a new approach, which had never been validated in Europe, at least for supersonic conditions. The computations allowed a critical assessment of the capabilities of this concept. A strategy for the use of nonlinear Parabolized Stability Equations (PSE) was developed by the partners, so that systematic applications of this control technique are now possible, at least numerically.

Partners

Lead Organisation
Organisation
Office National D' Etudes Et De Recherches Aérospatiales
Address
29, avenue de la Division Leclerc, BP72 CHÂTILLON CEDEX, France
Organisation website
Partner Organisations
Organisation
Swedish Defence Research Agency
Address
Ranhammarsvaegen 14, STOCKHOLM, Sweden
Organisation website
EU Contribution
€800 000
Organisation
Swedish Defence Research Agency
Address
Ranhammarsvaegen 14, STOCKHOLM, Sweden
Organisation website
EU Contribution
€0
Organisation
Ibk Ingenieurbuero Dr Kretzschmar
Address
Rehdorfer Str. 4, 90431 NUREMBERG, Germany
Organisation website
EU Contribution
€699 994
Organisation
Ibk Ingenieurbuero Dr Kretzschmar
Address
Rehdorfer Str. 4, 90431 NUREMBERG, Germany
Organisation website
EU Contribution
€0
Organisation
Associacao Do Instituto Superior Tecnico Para A Investigacao E Desenvolvimento
Address
Avenida Rovisco Pais 1, 1049 001 Lisboa, Portugal
Organisation website
EU Contribution
€1 112 784
Organisation
Associacao Do Instituto Superior Tecnico Para A Investigacao E Desenvolvimento
Address
Avenida Rovisco Pais 1, 1049 001 Lisboa, Portugal
Organisation website
EU Contribution
€0
Organisation
Airbus Operations Limited
Address
New Filton House, Filton, BRISTOL, BS99 7AR, United Kingdom
Organisation website
EU Contribution
€605 610
Organisation
Airbus Operations Limited
Address
New Filton House, Filton, BRISTOL, BS99 7AR, United Kingdom
Organisation website
EU Contribution
€0
Organisation
Centro Italiano Ricerche Aerospaziali Scpa
Address
Via Maiorise s/n, 81043 CAPUA (CE), Italy
Organisation website
EU Contribution
€1 000 000
Organisation
Centro Italiano Ricerche Aerospaziali Scpa
Address
Via Maiorise s/n, 81043 CAPUA (CE), Italy
Organisation website
EU Contribution
€0
Organisation
Dassault Aviation
Address
9, Rond-Point des Champs-Elysées - Marcel Dassault, 75008 PARIS, France
Organisation website
EU Contribution
€2 000 000
Organisation
Dassault Aviation
Address
9, Rond-Point des Champs-Elysées - Marcel Dassault, 75008 PARIS, France
Organisation website
EU Contribution
€0
Organisation
Deutsches Zentrum Fr Luft Und Raumfahrt E.v
Address
Linder Hoehe, 51147 KOELN, Germany
Organisation website
EU Contribution
€184 973 050
Organisation
Deutsches Zentrum Fr Luft Und Raumfahrt E.v
Address
Linder Hoehe, 51147 KOELN, Germany
Organisation website
EU Contribution
€0
Organisation
Kungliga Tekniska Hgskolan
Address
Valhallav 79, STOCKHOLM, Sweden
Organisation website
EU Contribution
€968 100
Organisation
Kungliga Tekniska Hgskolan
Address
Valhallav 79, STOCKHOLM, Sweden
Organisation website
EU Contribution
€0

Technologies

Contribute! Submit your project

Do you wish to submit a project or a programme? Head over to the Contribute page, login and follow the process!

Submit