Skip to main content
European Commission logo
TRIMIS

Variance Aware Determinate assembly Integrated System

PROJECTS
Funding
European
European Union
Duration
-
Status
Complete
Geo-spatial type
Other
Total project cost
€1 914 188
EU Contribution
€1 699 988
Project website
Project Acronym
VADIS
STRIA Roadmaps
Vehicle design and manufacturing (VDM)
Transport mode
Airborne icon
Transport policies
Other specified
Transport sectors
Passenger transport,
Freight transport

Overview

Call for proposal
H2020-CS2-CFP03-2016-01
Link to CORDIS
Objectives

The VADIS project aims to develop innovative and ground breaking assembly methods and solutions for cost effective wing manufacture for the future regional aircraft based on reverse engineering, intelligent process adaption, and variability aware processes and tooling. The project will develop and implement new digital design and simulation techniques, combined with future highly efficient, informatics rich and quality-driven cost-effective manufacturing solutions which will be rigorously tested and validated to deliver an integrated future wing box assembly cell.

VADIS will produce an integrated wing box assembly cell for future regional aircraft, taking advantage of the latest advances in metrology, digital manufacturing and process adaption to achieve part-to-part assembly. A high tolerance deterministic assembly approach will be applied to reduce parasitic drag caused by traditional panel gaps. Reconfigurable assembly tooling will be used to reduce tooling costs allowing the most efficient response and flexibility in design changes. Low energy low cost mould tooling and out of autoclave processing will be exploited to achieve significant cost reduction. Synergies with current developments of fixed wing airframe ITD will be explored to promote best practice based on the existing strong industrial and research expertise in the consortium.

The VADIS project will deliver the following target outcomes:

  • Variability analysis and characterization for process and fixture tolerances;
  • Assembly process capability assessment and investigation of feasible tolerance range widening;
  • Technology benchmarking for optimised design of a self-adaptive fixture, metrology system for reverse engineering, cell layout and software for digital twin creation;
  • Achieve ±0.006 mm accurate reverse engineering solution;
  • Adaptively updating digital twin of spar-rib-skin assembly model;
  • Cell process adaption capability to achieve part-to-part assembly.

Funding

Parent Programmes
Institution Type
Public institution
Institution Name
European Commission
Type of funding
Public (EU)
Specific funding programme
H2020-EU.3.4.5.2.

Partners

Lead Organisation
Organisation
The University Of Nottingham
Address
University Park, Nottingham, NG7 2RD, United Kingdom
EU Contribution
€1 200 188
Partner Organisations
Organisation
Electroimpact Uk Limited
Address
ELECTROIMPACT TECHNOLOGY PARK MANOR LANE, HAWARDEN, CH5 3ST, United Kingdom
EU Contribution
€499 800

Technologies

Technology Theme
Aircraft design and manufacturing
Technology
Reduced-cost wing manufacture
Development phase
Research/Invention

Contribute! Submit your project

Do you wish to submit a project or a programme? Head over to the Contribute page, login and follow the process!

Submit