Overview
Greenhouse gas (GHG) emissions from ammonia fertiliser production and maritime fuel consumption represent between 1 % and 3 % of total emissions. Synthesising ammonia with renewable energy can replace existing fertiliser production, deliver an energy carrier for the emerging eFuel market, and contribute to the EU transition to net-zero GHG emissions by 2050. In this context, the EU-funded VERGE project will develop a distributed renewable energy technology based on directly utilised intermittent renewable energy that produces liquid ammonia from air and water. The project will create knowledge and scientific proof of the technical feasibility of this innovative technology. This will form the basis for economic, sociological and environmental optimisation.
The VERGE project will develop a disruptive & distributed renewable energy technology that will directly utilise intermittent renewable energy to produce liquid ammonia from air and water. Synthesising ammonia with renewable energy can both replace the current fertiliser production, and facilitate the emerging eFUEL market by providing an energy carrier, e.g. for maritime. Current greenhouse gas (GHG) emissions from ammonia fertiliser production and maritime fuel consumption constitute about 1% and 3% of total GHG emissions, respectively. Avoiding these emissions would contribute towards the transition to a net-zero GHG emissions in the EU economy by 2050. Starting at TRL2 with realistic goals to reach TRL4 by the end of the project, the VERGE technology will: A) Optimise the electrolytic system for nitrogen reduction and demonstrate ammonia synthesis through an inter-laboratory study with the realistic measurable goals of a reaction rate 1*10-9 mol/s/cm2, current efficiency of 50% and at least 300 h stable operations. B) Design the process for optimised operations with intermittent energy sources to produce liquid ammonia. The VERGE project will create knowledge and scientific proof of its technical feasibility as well as lay the basis for economical, sociological and environmental optimisation of the process. Frequent communication with stakeholders allows the VERGE project to develop a clear vision towards optimisation, scale-up and market entry as well as further enhancing the EU innovation base in the field of electrochemical processes. The VERGE project will be carried out by a consortium from five European countries, composed of two universities, a tech transfer institute, two large companies, a LCA consultancy and last but not least, an SME for future scale-up and exploitation. Each consortium member has demonstrated excellence in its fields, with high impact publications, exceptional customer service and a history of international project participation.