GOAL based Damage Stability

Survivability of Passenger Vessels

Progress in s-factor development

WP 3, Glasgow, 21 December 2009

J. Cichowicz, N. Tsakalakis, D. Vassalos - SSRC
List of Contents

- Remarks on current formulation
- Basic notions
- Loss transition band
- Floodwater accumulation
- Outlook for re-engineered s-factor
- Discussion
Remarks on current formulae

- Considering the actual physics of damage stability, it may be expected that significant inaccuracies occur if transient capsize (caused by insufficient initial GM) or sinking due to progressive flooding (floatability failure) play a major role.

- The product of GZ_{max} and Range, in current formula for s factor, constitutes an envelope to GZ area without clear reference to actual restoring moment.

- No explicit reference to flooding process.

- Questionable choice of critical wave height.
Remarks on current formulation

Survivability of Passenger Vessels
Remarks on current formulation
Remarks on current formulation

![Graph showing comparison between Hs predicted and Hs measured.](image)
Basic notions

- One of the problems related to the current formulation is inconsistency in notions.
- Although the term *survivability factor* does not distinguish between particular modes of loss, the formula itself relates mainly to [proper] capsizes and, as discussed, is unlikely to address another major failure modes accurately.
- Therefore there is a need to agree on transparent and precise notations and definitions.
Basic notions

Categorisation based on mechanics of loss

- **Capsize** – gradual process of diminishing stability caused by progressive flooding; it is a quasi-static phenomenon dependent on floodable volumes (floodwater) distribution and stability characteristics; outcome weakly dependent on opening geometry (which affects only time)

- **Transient capsize** – stability failure due to rapid floodwater ingress; dynamic process dependent on opening size, floodwater distribution and stability (intact) characteristics

- **Sinking** – floatability failure; usually gradual, quasi-steady process with time to loss depending strongly on rate of flow through damage and internal openings and floodable volume characteristics

Categorisation based on time to loss

- **Rapid loss** – transient capsize

- **Gradual loss** – capsize and sinking
Basic notions

- Similarly when discussing transition from safe to unsafe sea states without distinguishing between modes of loss, may be better to consider using more precise term, e.g. *loss transition band.*
Loss transition band

Sigmoid behaviour of loss count (or relative loss number)
Loss transition band

Different distributions of gradual and rapid losses (although not the best example)
Loss transition band

In case of rapid capsizes the sigmoid trend is questionable
Loss transition band

Contraction towards the lower limit – time invariance. Is constructing of the s-factor around 50% p_f justified?

![Graph showing impact of observation time on loss transition band](image)

- **Impact of observation time on loss transition band**
- **pf [-]** vs **HS [m]**
- **t=3600s**
- **t=1800s**

21/12/2010 Survivability of Passenger Vessels 13
Floodwater Accumulation

- If could be used, i.e. expressed by means of single quantity it would allow to loss scenario to its origin.
- Furthermore it could complement stability (intact and damage parameters) to ensure rendering all the major modes.
- For regulatory purposes floodwater accumulation has to be expressed in a way ensuring feasibility of statistical approach based on association of ship and damage characteristic with floodwater-based parameters
- It should be general enough to be ship-type independent (not limited to WoD)
Floodwater Accumulation

Starting point:

![Graphs showing low-frequency components of WoD in capsize and survive cases, and heel time history with HS=3.6 m.](image-url)
Floodwater Accumulation

PRR01 - Average 95th Percentile of Floodwater Mass

T = 6.25 [m], KG = 13.246 [m], Slope 0.05

Average 95th Percentile of Floodwater Mass (t)

0 500 1000 1500 2000 2500 3000

0 200 400 600 800 1000 1200 1400 1600 1800 2000

time [sec]

- HS 1.75 [m]
- "+2.5*SD"
- "-2.5*SD"
- HS 1.50 [m]
- HS 2.00 [m]
- HS 2.25 [m]
Floodwater Accumulation

Cruise vessel C2
damage DMC14

Survivability of Passenger Vessels
Floodwater Accumulation

Importance of confidence band
Floodwater Accumulation

Importance of confidence limit

Impact of observation time on critical amount of floodwater characteristics

C1 L1 DMC 14

Cruise vessel C2 damage DMC110

Survivability of Passenger Vessels
Discussion on future s factor

- The future s-factor formulation should be based on the assumption of (probabilistically) infinite time to loss (i.e. \(s=1 \) should translate as statistically unconditional survival)

- The parameter set used in the s-factor should be extended to include more stability related parameters, including volumetric parameters of watertight spaces

- It should be attempted to express the s-factor formulation so that it is valid for all modes of loss-failure; furthermore, time-based criteria should be used instead of standards which derive from mechanics of loss