SITPRO Plus – Evaluation of the Impact of EU Transport Research Projects in FP5 and FP6

1st Project Rapid Report

The SITPRO Plus Project analyzes the impacts of transport projects funded by the European Commission within the 5th and 6th Framework Programmes for Research and Technological Development. Its final aim is to use these findings to define new transport research policy objectives and to provide the European Commission with a methodology for impact assessment in the ongoing and future Framework Programmes.

The SITPRO Plus Project started in October 2008 and will be completed in September 2010. All reports of the project will publicly available for download from the website www.sitproplus.eu. The project is funded by the European Commission through the 7th Framework Programme. Along with four other research projects it forms part of a broader initiative in the Transport Research Programme for developing specific impact assessment methodologies for EC-funded projects.

This is the first rapid report of the project. It presents the contents of the project, some preliminary results and the information about the four other cluster projects.

Project Objectives and Scope

The SITPRO Plus project uses the results and findings from FP5 and FP6 transport projects to contribute to

1. The definition of new EU research policy objectives
 EU research policy objectives are determined by several factors (see figure). On this basis a research agenda is drawn up which in turn determines the content of the transport research programme and the specific research projects.

2. Intermediate performance targets for FP7
 The methodology to assess and evaluate FP5 and FP6 transport research projects is based on an ‘objectives–led’ approach. The types of impacts are being measured against the following objectives
 - Strengthening competitiveness of the European industry;
 - Contributing to sustainable development;
• Improving Community and public policies.

SITPRO Plus covers all modes of transport and thus all 512 transport projects funded under the GROWTH programme in FP5 and all 457 transport projects funded under Priorities 4, 6 and 8 in FP6.

Methodological approach

On the whole, the methodological approach of the project comprises the following seven elements.

1. **Analysis of databases**
 Basic information on all 969 projects (duration, budget, partners, abstracts, etc.) was obtained from DG RTD and complemented with data from the CORDIS website and the Transport Knowledge Research Centre website. This information was fed into the SITPRO Plus database. This data was then subject to a preliminary analysis to group the projects by different characteristics (e.g. size, instrument, topics addressed) for the sampling procedure.

2. **Interviews with Commission officials**
 Semi-structured interviews with eleven European Commission officials served the dual purpose of accessing relevant data sources and identifying the crucial points for evaluating the strengths and weaknesses of transport projects in FP5 and FP6.

3. **Project sampling**
 A sample of 120 projects (12.4%) was drawn, based on three criteria: thematic area/mode, project instrument and size in terms of budget.

4. **Internet questionnaire**
 An internet questionnaire on the impact pathways of the projects is currently being drawn up and sent to all coordinators of research projects in FP5 and FP6. The results of those questionnaires will feed into the definition of new research policy objectives and intermediate performance targets for FP7.

5. **Desk review of project reports**
 For those projects selected through the sampling procedure at least the original project proposal and the final project report will be read and the impact pathways and the results analysed.

6. **Telephone interviews with coordinators**
 Telephone interviews will be conducted with the coordinators of the selected projects. The purpose of those interviews is to deepen the understanding work within the project and especially also the medium term impact of the project’s results after the end of the project.

7. **Analysis of projects’ impact pathways**
 On the basis of the detailed project studies the research impact pathways will be determined. This will be conceptualised in recognition both that most of the impacts of the Programme have yet to materialise, and that impacts will occur over a long time span. The research impact pathway will provide a framework for understanding how impacts can be expected to occur. It is expected to have the following distinct stages:

 a. production of research outputs – creation of the “product”;

 b. dissemination of outputs – raising the level of awareness about the product;

 c. exploitation of outputs – by key intermediaries or end-users of the research; and - much longer term:

 d. end impacts on society – on consumers and producers.
Initial project results

Analysis of project data

The analysis of the project data revealed three main developments between FP5 and FP6. First, although the budget for transport research in FP6 was larger than in FP5, there were fewer FP6 transport projects (see table). But the FP6 projects were generally bigger, both in terms of budget and number of participants; particularly within surface transport research (air & space projects were already fairly large). Second, FP6 saw a shift away from strategic and technology research and towards research on management, system and design. Third, the geographical distribution of project participants and co-ordinators became, on the whole, slightly more ‘representative’ from FP5 to FP6, although ‘Eastern’ countries (i.e. new member states) were significantly under-represented in both FPs, particularly as regards project co-ordination. A more unexpected discovery was the dramatic decrease in the proportion project co-ordinators from the ‘Nordic/UK/Ireland’ region in FP6.

Table: Number and budget of FP5 and FP6 transport projects by mode

<table>
<thead>
<tr>
<th>Mode</th>
<th>FP5</th>
<th>FP6</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Number of projects</td>
<td>Share of projects in %</td>
</tr>
<tr>
<td>Policy</td>
<td>68</td>
<td>13.3</td>
</tr>
<tr>
<td>Surface transport</td>
<td>277</td>
<td>54.1</td>
</tr>
<tr>
<td>Air & space</td>
<td>167</td>
<td>32.6</td>
</tr>
<tr>
<td>Total</td>
<td>512</td>
<td>100</td>
</tr>
</tbody>
</table>

Based on an analysis of the project data, literature of the FPs and interviews with Commission officials, it appears that, in many cases, these shifts can be explained both by a ‘natural’ development in the research transport agenda from FP5 to FP6 and by the Commission’s changes to the structure and thematic orientation of transport research in FP6. These changes occurred for a variety of reasons and included the introduction of two new instruments: IPs and NOEs (which have generally received a critical appraisal in the literature as well as within the Commission). The shift away from technology research towards management, system and design in FP6 can be explained, for example, by the need to explore the use and application of technologies developed in earlier FPs, as well by the extension of the transport programme’s objectives (from increasing economic competitiveness to also including sustainability objectives) and by the increased emphasis on networking activities in FP6 (in which technology research is under-represented) by the Commission. Similarly, the reduction in strategic research can partly be explained by the success of previous FPs in building up ‘European expertise’ in transport research (so there was less need to support it in FP6). But it is also due to the shift in the budget for transport research in FP6 away from DG TREN (where the results of strategic transport research are used) towards DG RTD, as well as the perception by some at DG TREN that strategic research was not providing results directly useful to policy making.

Management and quality of transport projects

As regards management, there appears to be a general consensus among Commission officials that the administrative workload on project management had increased since FP4, both due to an increased budget for transport research (but not personnel) and Commission-wide changes to rules and
procedures. Whereas many felt the new instruments had eased this workload, it was suggested that this had come at the price of less control over individual projects and more difficult project management at the consortium level. There was less consensus about the relationship between DG TREN and DG RTD in the management of the transport programme and projects, with opinions turning on individual experiences.

Most officials were, on the whole, satisfied with the quality of transport projects. Furthermore, the interviewees provided different understandings of what ‘quality’ might mean in transport research and offered some interesting insights into possible criteria for the evaluation of transport projects. Some potential difficulties were also mentioned, including the possible tension between different understandings of quality (e.g. academic rigour and relevance for policy makers), and whether a narrower (i.e. restricted to the evaluation of a project’s results) or a broader (i.e. taking into account the impact on the European research community) approach to a quality should be adopted.

The most commonly leveled criticism regarding the quality of transport projects was that their results are often poorly presented and/or disseminated (including within the Commission itself), although there was quite a wide range of opinions on this issue, depending on personal experiences. Finally, there were some interesting observations that certain types of project perform better than others (e.g. TNs/CAs) and some worse than others (e.g. NoEs).

Conclusions

As regards the **evaluation of the impacts of projects**, some important structuring elements and basic material can be derived from the early results of the project for the formulation of research hypotheses. In order to speak about impact, the relevant output categories of EU transport projects have to be defined. The following main output categories were identified in the literature and interviews, depending on the topic and type of projects:

Creation of knowledge – This refers to the typical output of basic research activities, defined as cutting edge research advancing the state of the art and contributing to the (academic) knowledge base in a certain field. Actual outputs are usually publications.

Technological development – A large proportion of the European Research Programme is dedicated to applied research on various issues, ranging from new materials to entire machines. Anything from the development of new processes to demonstration objects or products may be an output in this category.

Knowledge transfer – This is the primary objective of networking projects, but this is a secondary output for most other types of projects. Knowledge transfer can be geographical (i.e. from one part of Europe to another), sectoral (e.g. from researchers to NGOs), (inter)disciplinary, or within a sector (e.g. within the transport sector from rail to urban).

Building research capacity – The training and career development of researchers is an inherent part of any project. This is usually a consequence of the three preceding points and a secondary output. But in some cases this can be separate aspect in a project.

Integrating and structuring the research field – The European Research Programmes have clearly led to increased co-operation among research organizations from different member states. One effect of this co-operation is a re-structuring of certain research fields. The actual integration of research activities is one of the prime objectives of the Framework Programme and is therefore a potential output to be considered by any evaluation.

Policy support – Direct policy-oriented research has been a part of the Framework Programmes since FP4. Outputs are delivered either as explicit policy recommendations or implicitly through the transfer of relevant knowledge.
The evaluation process in the SITPRO Plus project is strongly impact-oriented. But the project also places special emphasis on how these impacts were generated and, more specifically, how effective and efficient different types of projects were in achieving certain results. For this purpose, any method for project impact assessment should concentrate not only on the impact pathways following the end of a project, but should also analyze the main input and output factors during the projects’ lifetimes. This includes the monetary input to the projects as well as other resources and the time frame in which the work was accomplished.

Cluster Projects

The SITPRO Plus project was part of a larger FP5/FP6 Evaluation Cluster that was funded by DG RESEARCH in the framework of FP7. In total, this cluster comprised five projects with slightly differing scopes and methodologies. The other four projects were:

AIMS
Freight transport – all modes
http://www.aims-project.net/

AGAPE
Air transport

MEFISTO
Air transport
http://www.mefisto-project.eu/

METRONOME
All modes except air – passenger and freight
http://www.vtt.fi/sites/metronome/index.jsp

Information details

Project full title: Study of the Impacts of the Transport RTD Projects in FP5 and FP6 (SITPRO Plus)

Duration: October 2008 – September 2010

Project coordinator: The Interdisciplinary Centre for Comparative Research in the Social Sciences

Project partners: Institute for Transport Studies, University of Leeds, UK
TIS.pt, Consultores em Transportes, Inovação e Sistemas, Lisbon, Portugal
Nouveaux espaces de transport en Europe, Paris, France

Contact:
Michael Schmidt
ICCR Vienna, Schottenfeldgasse 69/1, 1070 Vienna, Austria
Phone: +43 1 524 1393 126
E-mail: m.schmidt@iccr-international.org
Web: www.sitproplus.eu