Special Technology Session 8
Drag Reduction Technologies
ECCOMAS CFD 2006

David Sawyers
Research and Technology Local Co-ordinator UK
Aerodynamics domain, Airbus
STS8 – Drag Reduction Technologies

• Chairman: David Sawyers, AIRBUS

Programme:

• David Sawyers (AIRBUS), Introduction

• Karl-Heinz Horstmann (DLR) - “Overview on Drag Reduction Technologies”

• David Sawyers (AIRBUS) - “Overview of the TELFONA Project - Drag Reduction by Natural Laminar Flow”

• Eric Coustols (ONERA) - “Supersonic Laminar Flow Control Techniques investigated within the SUPERTRAC Project”

• Marcus Engert (TU Berlin) - “Active Cancellation of TS-instabilities in compressible flows using a closed-loop controller”
The challenge of ACARE2020 (1)

• ACARE has developed a vision for Aeronautics in the year 2020.
• The vision addresses the following areas:
 ‣ Quality and Affordability
 ‣ Safety
 ‣ Environment
 ‣ European Air Transport System
• The Strategic Research Agenda is being used to stimulate research activities in Europe.
The challenge of ACARE2020 (2)

• The environmental targets for aeronautics research are extremely challenging:
 ‣ To reduce fuel consumption and CO2 emissions by 50%
 ‣ To reduce perceived external noise by 50%
 ‣ To reduce NOx by 80%
 ‣ To make substantial progress in reducing the environmental impact of the manufacture, maintenance and disposal of aircraft and related products.

• The first goal translates into a reduction in fuel consumption of 50%.
 ‣ Initial estimates suggest half of this should come from improved aerodynamics.
The response from the research community

- The current configuration for commercial aircraft is mature
 - There are relatively few opportunities to substantially reduce aircraft drag levels
 - Research is needed to examine new configurations

- In addition, there is a clear need for “game changing” drag reduction technologies to be developed.

- Two main opportunities have been identified:
 - Laminar flow control – reduce drag through delaying boundary layer transition
 - Turbulent drag reduction – reduce drag levels through wall structure manipulation
© AIRBUS UK LTD. All rights reserved. Confidential and proprietary document.

This document and all information contained herein is the sole property of AIRBUS UK LTD. No intellectual property rights are granted by the delivery of this document or the disclosure of its content. This document shall not be reproduced or disclosed to a third party without the express written consent of AIRBUS UK LTD. This document and its content shall not be used for any purpose other than that for which it is supplied.

The statements made herein do not constitute an offer. They are based on the mentioned assumptions and are expressed in good faith. Where the supporting grounds for these statements are not shown, AIRBUS UK LTD will be pleased to explain the basis thereof.

An Overview of the TELFONA project

David Sawyers, Project Co-ordinator
Research and Technology Local Co-ordinator UK
Aerodynamics domain, Airbus UK Limited
Previous European Laminar Flow research (1)

- Delaying boundary layer transition is a well-known method of reducing drag
- Significant work has been done on Natural Laminar Flow (NLF) research
 - DLR ATTAS aircraft flight tests
 - ELFIN project Fokker F100 aircraft flight tests
 - Development of Piaggio P180 aircraft
Previous European Laminar Flow research (2)

- NLF research activities fed into series of Hybrid Laminar Flow Control research projects
 - It is well known that NLF cannot be applied at very high Re
- European projects (ELFIN/HYLDA/HYLTEC/ALTTA) developed suction technology and identified major show-stoppers
 - Manufacturing surface quality including that of suction panels
 - Need for anti-contamination system
 - Weight of suction system
- New activities on active control of instability waves through use of sensors and actuators.
Why return to NLF research?

• Opportunities to further reduce aircraft drag beyond today’s highly optimised designs require a significant change in aircraft configuration

• HARLS concept = High Aspect Ratio Low Sweep wing configuration optimised for fuel burn rather than operating costs.

• Using a low sweep wing might unlock the option of NLF.

• European FP6 projects used as the basis for exploring this new configuration concept
 ‣ NACRE project will perform multi-disciplinary assessment of turbulent HARLS configurations and study application of NLF to Forward Swept Wing configuration.
 ‣ TELFONA project will develop design concepts for NLF HARLS wing.
Main objectives of TELFONA project

• The overall objective of TELFONA is to demonstrate the NLF aircraft performance in flight based on wind tunnel test and CFD results.

• Top level technical objectives
 ‣ Calibration of ETW for testing laminar flow aircraft
 ‣ Integration of receptivity modelling into transition prediction methods
 ‣ Development of flight performance methods for a laminar flow aircraft
 ‣ Validation of developed methods
TELFONA project structure

• TELFONA is structured around the design, manufacturing, testing and analysis of two wing concepts.

• Pathfinder Wing
 ‣ Objective = Calibrate transition prediction methods for ETW.

• Performance Wing
 ‣ Objective = Demonstrate the performance of the HARLS NLF configuration at flight Reynolds number

• Additional activities include transition methods development and development of new measurement techniques.
Development of the Pathfinder Wing
Pathfinder Wing objective

• The main objective for the first phase of TELFONA is to produce the data to calibrate transition prediction methods for ETW flow conditions
 ‣ Calibration required to enable methods to be used in design activities
 ‣ Different “N” levels apply in flight and in different wind tunnels

• This calibration will be done using a wing specifically designed for this purpose – the Pathfinder Wing
• This wing is designed to generate pressure distributions which give well-behaved N-factor curves
• Wing will be tested on existing Airbus wind tunnel model fuselage – X55.
Basic design specification

- Design Mach No - M=0.78
- Re = 20 million (close to limit of NLF)
- Leading edge sweep angle = 18 degrees
- Taper = 0.8
- Model wing span = 1.8 metres
 - Needs to fit inside ETW!
- Model can be yawed +/-4 degrees to vary cross-flow conditions
- 3D wing needs constant chord isobars over mid-span region
Aerofoil design activities (1)

• CIRA, DLR and ONERA have designed suitable aerofoils for the Pathfinder Wing using their preferred linear transition prediction methods

• CIRA02M6N aerofoil designed using genetic algorithm model linked to MSES Euler 2.5D flow code + ONERA/CIRA database transition method
Aerofoil design activities (2)

• ONERA aerofoil designed to have specific behaviour on u/s at –1deg and on l/s at +1deg.
Analysis of aerofoil designs

- Final aerofoils checked through 3 partners’ transition methods – DLR’s LV5 aerofoil selected for 3D wing
Wing design activities

• DLR was responsible for the 3D design of the Pathfinder Wing
• Wing designed using 3D inverse CFD method to have the same CP behaviour as the LV5 aerofoil
Selection of test points (1)

- The main test cases for the Pathfinder Wing need to be carefully chosen.
- CFD has been used to calculate pressure data at a range of \((\alpha, \beta, M)\) conditions.

\[0.300 < \eta < 0.6 \]
\[CL = 0.2163 \]
\[M = 0.78 \]

\[0.300 < \eta < 0.6 \]
\[CL = 0.2163 \]
\[M = 0.78, C_l = 0.2163 (\eta = 0) \]
Selection of test points (2)

• Airbus have done linear stability calculations for the range of possible test cases.
• The aim for this is to select a number of cases demonstrating pure cross-flow (CF), pure Tollmien-Schlichting (TS) and mixed transition modes.
• Final selection still to be made as calculations continue.
Designing the wind tunnel model (1)

- Aerodynamic surface data supplied by DLR to Airbus
- Airbus is responsible for designing the model hardware – DLR is responsible for manufacture
- Three measurement techniques
 - Pressure tappings
 - Temperature Sensitive Paint (TSP)
 - Piezo-layer
- Location of pressure tappings need to avoid causing transition on TSP area.
- Pressure tapping locations proposed to ensure best possible input to laminar boundary layer (BL) solver around attachment line within practical constraints
Designing the wind tunnel model (2)

• TSP and Piezo-layers will be used to determine transition
 ‣ TSP over mid-span region of wing
• Piezo-layer on outer wing lower surface
 ‣ Best location for detection of TS waves

Example TSP image
Re = 12 mill
Validation of measurement techniques

• Proposed measurement techniques are to be validated using pilot ETW test on NLF aerofoil model as part of specific task on generating boundary layer receptivity data
• Model designed/manufactured by TU Berlin.
• Piezo-sensors to be used to detect high frequency BL disturbances (<100kHz)
• Initial non-parallel stability calcs by Imperial College – used to size wing chord
• Data to be supplied to TELFONA Receptivity task team
Pathfinder Wing – current status

• Model is designed and waiting for manufacture
• ETW test is now targeted at Q1/07 – delay from original plans but no impact on overall time schedules
• Test programme to be finalised
Development of the Performance Wing
Development of the Performance Wing

• The development of the Performance Wing is the main activity in the second phase of TELFONA
• The aim is to demonstrate the performance potential of the HARLS NLF configuration at flight Reynolds number
• Activity on this task has just started – development of design constraints
• Plan to use the NACRE HARLS baseline as the starting point for design studies
 ‣ Options for planform modifications to be studied using section design studies (CIRA, DLR, IST)
 ‣ Modified wing concept to be used as input to 3D wing design stage (Airbus)
• Wing to be tested in ETW in Jan 2008
• Tunnel-to-flight corrections to be made to provide aircraft performance standard.
Conclusions

• A new Pathfinder Wing geometry has been developed with the specific aim of calibrating transition prediction methods in ETW
• The wind tunnel model will use different measurement techniques to record flow characteristics
• The test is planned for early 2007
• The calibration of transition prediction methods using the Pathfinder Wing will take place after the ETW test
• A selection of test cases will be released to the wider research community
• The Performance Wing aerodynamic design is to start soon leading to a test in Jan 2008
• Further information is available via www.telfona.com