HySYS: Fuel Cell Hybrid Vehicle System Component Development

Project Overview

Final Event
22.09.2010 Stuttgart, Germany
Jörg Wind
Daimler AG
FACTS

Coordinator: Daimler AG

Total budget: 22.7 M€

EC-Funding: 11.2 M€

Partners: 28 (17 Industry, 2 SMEs, 4 Institutes, 5 Universities)

Countries: 8 EC Member States and Switzerland

Duration: 01.12.2005 – 30.11.2010
HySYS - Fuel Cell Hybrid Vehicle System Component Development

IP-Partners

6 OEM’s

DAIMLER CENTRO RICERCE FIAT VOLVO
PSA PEUGEOT CITROËN RENAULT

14 Suppliers

AVL SAFT BOSCH fumatech NuCellSys Continental
Eldor Corporation Rivoira Selin ATB Fischer Precise
Magna Steyr e2V

3 Institutes

ENEA CNM TNO

5 Universities

Hochschule Esslingen
University of Applied Sciences
Motivation

- Improvement of system components for FC-hybrid vehicles is necessary to meet all necessary requirements for mass production
- Involve supplier industry more deeply in FC- and ICE Hybrid component development by cooperation in a European project
- Close cooperation of car industry with suppliers is needed for a successful market introduction of FC-vehicles

Objective

- Improved low cost FC-system components (air supply, hydrogen supply, humidifier, H$_2$-sensors) suitable for mass production
- Improved low cost E-drive components (E-motor, power electronics, battery) suitable for mass production
- Optimised system architecture for low energy consumption and high performance
- All achievements will be validated in vehicles (2 validators)
Project Goals

- Improvement of **fuel cell** system components for **market readiness**
- Improvement of **electric drive train** components (Synergies FC and ICE-hybrids) for market readiness
- Optimisation of **system architecture** for low energy consumption, high performance, high durability and reliability
- Optimisation of energy management, enhanced FC-drive train efficiency
- Development of low cost components for **mass production**
- **Validation** of component and system performance on **FC Vehicles**
Regarded Components

- Low cost automotive **electrical turbochargers** for air supply with high efficiency and high dynamics
- Low cost **humidifiers** with high packaging density
- Low cost **hydrogen sensors** for automotive use
- Effective low cost **hydrogen supply** line
- High efficient, high power density **electric drive train**
- Low cost high power **Li-ion batteries**
Definition of Vehicle Requirements

<table>
<thead>
<tr>
<th>Parameter</th>
<th>DAIMLER Validator (MB-Sprinter)</th>
<th>CRF Validator (FIAT Panda)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Motor Power (cont/Peak)</td>
<td>70 / 100 kW</td>
<td>40 / 75 kW</td>
</tr>
<tr>
<td>Fuel Cell Power</td>
<td>80 kW</td>
<td>60 kW (nominal)–75 kW (peak)</td>
</tr>
<tr>
<td>Gearbox</td>
<td>One gear ratio</td>
<td>One gear ratio</td>
</tr>
<tr>
<td>Batterie LiIon</td>
<td>30 – 50 kW, 2 kWh</td>
<td>Not foreseen</td>
</tr>
<tr>
<td>Weight empty/fully loaded</td>
<td><= 2.7 t / 3.5 t</td>
<td>1.4 t / 1.7 t</td>
</tr>
<tr>
<td>Range at ½ load</td>
<td>> 300 km</td>
<td>250 km</td>
</tr>
<tr>
<td>Vmax</td>
<td>130 km/h @ grade 0%</td>
<td>140 km/h @ grade 0%</td>
</tr>
<tr>
<td>Vmax continuous</td>
<td>0-80km/h < 21 s</td>
<td>0-50km/h < 7 s</td>
</tr>
<tr>
<td>Acceleration</td>
<td>0-100 km/h < 37 s</td>
<td>0-100 km/h < 15 s</td>
</tr>
<tr>
<td>Climbing ability fully loaded</td>
<td>35%</td>
<td>23 %</td>
</tr>
<tr>
<td>Vmax at ½ load on 4% slope</td>
<td>N/A</td>
<td>> 80 km/h</td>
</tr>
</tbody>
</table>
HySYS component integration

- The HySYS validators use different base fuel cell systems and e-drive train components
- Some major components are replaced by those which are developed in HySYS

HySYS components which are integrated in the validators:

- Air supply: electric turbo charger and integrated air sensor
- Hydrogen Metering Device
- Hydrogen humidification system
- Electric Motor
- Inverter
- DC/DC converter
- Li-Ion battery system
Vehicle Integration – DAIMLER Validator: Packaging Concept

HV Battery

Converters

Drive Train

H2 Storage

FC Stack

Air supply

HV Battery
VEHICLE INTEGRATION – CRF VALIDATOR:
Packaging Concept
Fuel Cell System Components, #1

Air supply

Current Technology:
Screw-Compressor

Innovative Technology:
Electrical Turbocharger

- High Efficiency
- Low Cost, volume & weight
- High Dynamic response
- Noise reduction

Humidifier

Current Technology:
Contact humidifier

Innovative Technology:
Gas-to-gas humidifier

- high packaging density
- high humidification efficiency
- low degradation tendency
- low cost materials
- easy production technology

Involved partner: Fischer, Daimler, Bosch
Wind, Daimler

Involved partner: Fumatech, Daimler, CRB, Rivoira

HySYS Final Event September 22nd, 2010
Hydrogen Sensors

Current Technology:
- electrochemical sensors
- semiconductor sensors
- catalytic bed sensor

Innovative Technology:
- Palladium Nanostructure

- Low cost, weight & volume
- Fast response
- No calibration needed
- High gas selectivity
- Integrated design

Hydrogen supply line

Current Technology:
- standard H2 line with pressure regulator valves

Innovative Technology:
- Fully automated H2 line with Hydrogen Metering Device

- dual stage pressure reduction
- fully automatic operation
- flexible regulating FC stack pressure
- fail safe with failure recovery
- improved lifetime of FC system

Involved partner: EPFL, MiCS, PSA, LIRIM, Montpellier

Involved partner: Bosch, CRF
E-Drive System

Current Technology:
AC induction and PM brushless with low liquid cooling temperature (55-60 °C) power electronics

Innovative Technology:
Buried PM synchronous and mixed motors
• e-motor: higher specific torque-power and efficiency
• power electronics: higher integration and cooling temperature (up to 90 °C)
• HV-HV DC/DC converter: modular solution with high power density

Battery System

Current Technology: Ni-MeH

Innovative Technology: Li-ion
• higher specific power: from 1.35 to 2 kW/kg
• higher specific energy: from 46 to 63 Wh/kg
• higher efficiency: from 85 to 95%
• improved lifetime: from 8 to 15 years

Involved partners: CRF, Eldor, Daimler, PSA, ContiTemic, ATB, Univ. Maribor, wind, Daimler

Involved partners: Saft, Daimler, PSA, ContiTemic, Magna, ENEA
Parameter characteristics of fuel cell system during NEDC driving cycle

- Requested Current
- Electrical Load
- Stack Voltage
- Air mass flow
- Stack Current

Graphs showing data trends over time.

HySYS Final Event September 22nd, 2010
Fuel Cell System Efficiency Comparison

Fuel Cell system efficiency comparison

EUCAR TTW (V2c 07)

HySYS efficiency (Faraday)

Fuel Cell System Comparison:
HySYS fuel cell system efficiency compared with fuel cell system efficiency curve from EUCAR WTW Study
Thank you very much for your attention

More information on:
http://www.hysys.eu