The European Tilt Rotor Status of ERICA Design and Test Activities

Alessandro Stabellini
NICETRIP Project Manager

Madrid, 31 March 2011
Aerodays 2011
Madrid, 31 March 2011

Handling Qualities requirements background

Flight Control System Level 1 Control Laws

Rotor Hub Design

Low Speed Aerodynamic Interactions

Proprotor Gearbox, Interconnecting Shaft, Nacelle & Wing Actuators Loads & Dynamics

Rotor Dynamics, Performance & Noise

NICETRIP
ERIKA DESIGN CONCEPT

Small Rotor Diameter

Tiltable Wing

Structural Continuity of Tilting Mechanism

TILT WING

TILT ROTOR

TOW 11 tons
Pax 19/22
Vmax cr 330 Kts
The NICETRIP Integrated Project is proposed as part of a continuing European \textit{TILTROTOR} programme aimed at the acquisition, validation and integration of tiltrotor technology by the European Aerospace and associated supplier industries.

The main objectives are:

- to study the \textit{general architecture} of the aircraft
- to integrate some of the critical components of a tilt rotor aircraft on \textit{full-scale dedicated rigs}
- to develop and test a \textit{full-span powered model}
- to study the introduction of the \textit{T/R in the ATM}
NICETRIP CONSORTIUM

<table>
<thead>
<tr>
<th>CONTRACT COORDINATOR</th>
<th>VERTAIR</th>
<th>B</th>
</tr>
</thead>
<tbody>
<tr>
<td>HELICOPTER INDUSTRIES</td>
<td>AGUSTAWESTLAND</td>
<td>I-UK</td>
</tr>
<tr>
<td></td>
<td>EUROCOPTER</td>
<td>F-D</td>
</tr>
<tr>
<td>INDUSTRIAL ORGANISATIONS</td>
<td>CASTILLA , AERNNOVA , SENER</td>
<td>E</td>
</tr>
<tr>
<td></td>
<td>PAULSTRA</td>
<td>F</td>
</tr>
<tr>
<td></td>
<td>LLI , ZFL</td>
<td>D</td>
</tr>
<tr>
<td></td>
<td>GALILEO AVIONICA , MECAER</td>
<td>I</td>
</tr>
<tr>
<td></td>
<td>SECONDO MONA , SD , SICTA</td>
<td>I</td>
</tr>
<tr>
<td></td>
<td>SAMTECH</td>
<td>B</td>
</tr>
<tr>
<td>RESEARCH AND TEST CENTRES</td>
<td>ONERA , DLR , NLR , CIRA</td>
<td>F , D , NL , I</td>
</tr>
<tr>
<td></td>
<td>CTA , CENAERO , AVIATEST</td>
<td>E , B , LATVIA</td>
</tr>
<tr>
<td>UNIVERSITIES</td>
<td>POLIMI , UOL</td>
<td>I , UK</td>
</tr>
<tr>
<td></td>
<td>LIEGE , WUT , STUTTGARD</td>
<td>B , POLAND , D</td>
</tr>
<tr>
<td>SUB-CONTRACTORS</td>
<td>DNW , TSAGI</td>
<td>NL , RUSSIA</td>
</tr>
</tbody>
</table>

Madrid, 31 March 2011
NICETRIP ACTIVITIES

Tool validation

- Validation of flight mechanics tools
- Validation of CFD tools
- Validation of the aeroelastic tools

Blade flapping moment
Pressure distribution on the wing
Hub loads

Madrid, 31 March 2011
NICETRIP ACTIVITIES

Overall characteristics

• Weight estimate
• Aircraft performance
• General loads
• Handling qualities
• Noise

Maximum Speed sensitivity analysis

Design Gross Weight (VTO) @eta = 0.85, escresc=0%
maximum Gross Weight (STO) @eta = 0.85, escresc=0%
Design Gross Weight (VTO)@eta = 0.85, escresc=0%
maximum Gross Weight (STO) @eta = 0.85, escresc=0%

ISA
ISA+20°C
NICETRIP ACTIVITIES

Aerodynamics

• Rotor blade and cuff optimisation
• Wing and tail plane airfoils optimisation
• Nacelle/wing fairings optimisation
• Fuselage/wing fairings optimisation

Friction lines for the 4 blades
NICETRIP ACTIVITIES

Dynamics

• Rotor aeroelasticity
• Drive train and engine stability
• Whirl flutter stability
• Vibratory level/comfort
General architecture

- Aircraft general layout
- Systems integration
- Electronic mock up definition
NICETRIP ACTIVITIES

Airframe

- Wing structural preliminary design
- Fuselage structural design
NICETRIP ACTIVITIES

Power plant

- Nacelles structural design
- Drive system design
NICETRIP ACTIVITIES

- Rotor hub design
- Rotor blade design

Power plant

Cross section at 390 mm Radius

Cross section at 650 mm Radius

Cross section at 1573 mm Radius
NICETRIP ACTIVITIES

Hydraulics

- Hydraulic system requirements definition
- General architecture of the Hydraulic system
- Preliminary sizing of the hydraulic system components
NICETRIP ACTIVITIES

Fuel system

• Fuel system requirements definition
• Fuel system layout and functional specification
• Fuel system components preliminary specification
• Fuel system design baseline
Whirl tower full scale test

- Assess the dynamic behaviour
- Functional tests for rotor and transmission
- Performance tests
Drive system functional test

• Lubrication test
• Endurance and functional test in the Universal Transmission Test Facility
NICETRIP ACTIVITIES

Powered model wind tunnel test

- Powered model scale 1:5 design and manufacturing
- Tests at DNW-LLF wind tunnel
- Tests at ONERA-S1MA
Force model wind tunnel test

- Modular model scale 1:8 design and manufacturing
- Tests completed at the wind tunnel of Politecnico di Milano
NICETRIP ACTIVITIES

Air intake model wind tunnel test

• Air intake model scale 1:5 design and manufacturing
• Test completed at the wind tunnel of University of Liège
• Air intake model scale 1:2.5 design and manufacturing
• Preliminary test completed at the wind tunnel of POLIMI
• Final test at the wind tunnel of University of Liège
Real time simulation

- Several Standalone Real Time Simulation sessions performed at partners’ site to assess flyability of the procedures under investigation
- Distributed Real Time Simulation based connecting ATC simulation platform with 3 tilt-rotor simulators to evaluate the impact of tilt-rotor operations with “conventional” traffic on a complex operational airport scenario (Milan Malpensa)
- Actors involved: Pilots, ATCOs, Pseudo-pilots, Technical experts