HEATCO

Developing Harmonised European Approaches for Transport Costing and Project Assessment

Specific Support Action

PRIORITY SSP 3.2: The development of tools, indicators and operational parameters for assessing sustainable transport and energy systems performance (economic, environmental and social)

Deliverable 5
Proposal for Harmonised Guidelines

Due date of deliverable: 15 December 2005
Actual submission date: February 2006

Start date of project: 29 February 2004
Duration: 27 months

Lead contractor for this deliverable: IER, Germany

Second revision
HEATCO Deliverable 5

Proposal for Harmonised Guidelines

Peter Bickel
Rainer Friedrich
Arnaud Burgess
Patrizia Fagiani
Alistair Hunt
Gerard De Jong
James Laird
Christoph Lieb
Gunnar Lindberg
Peter Mackie
Stale Navrud
Thomas Odgaard
Andrea Ricci
Jeremy Shires
Lori Tavasszy

With contribution from partners.
Contents

0 Summary S1
 0.1 Introduction S1
 0.2 General issues S2
 0.3 Value of time and congestion S4
 0.3.1 Valuation Methodology S4
 0.3.2 VTTS values S4
 0.3.3 Treatment of Congestion S5
 0.3.4 Treatment of Uncertainty in VTTS values S7
 0.3.5 Implementation of VTTS Guidelines S7
 0.4 Value of changes in accident risks S14
 0.5 Environmental costs S17
 0.5.1 Air pollution S17
 0.5.2 Noise S22
 0.5.3 Global warming S25
 0.5.4 Other effects S26
 0.6 Costs and indirect costs of infrastructure investment S26
 0.6.1 Capital costs of the infrastructure investment S27
 0.6.2 Residual value S27
 0.6.3 Optimism-bias S28
 0.6.4 "Costs of maintenance, operation and administration" and "Changes in infrastructure costs on existing network" S29
 0.7 Vehicle operating costs S32

1 Introduction 1
 1.1 Transport appraisal 1
 1.2 Transport appraisal within the policy process 3
 1.3 The HEATCO guidelines and other supra-national guidelines at a EU level 3
 1.4 The structure of these guidelines 7

2 Transport Cost Benefit Analysis 9
 2.1 Overview 9
 2.2 Scope of CBA 11
 2.3 Definition of alternatives 11
 2.4 Transport User Benefits 12
 2.5 Impacts on Transport Providers and Government 13
 2.5.1 Producer surplus 13
 2.5.2 Investment costs 15
 2.5.3 Maintenance and system operating costs 16
2.5.4 Taxation and government revenue effects 16
2.6 Safety benefits 17
2.7 Impacts on the Environment 17
2.8 Cost Benefit Analysis Parameters 18
2.9 Risk and Uncertainty 18
2.10 Reporting the Cost Benefit Analysis 19

3 General Issues 21
3.1 Non-market valuation techniques 21
 3.1.1 Definitions 21
 3.1.2 Purpose/role in project appraisal 22
 3.1.3 Existing practice at EC and national levels 22
 3.1.4 Best practice 22
 3.1.5 Recommendations 24
3.2 Value Transfer 25
 3.2.1 Definitions 25
 3.2.2 Purpose/role in project appraisal 25
 3.2.3 Existing practice at EC and national levels 26
 3.2.4 Best practice 26
 3.2.5 Recommendations 27
3.3 Treatment of non-monetised impacts 27
 3.3.1 Definitions 27
 3.3.2 Purpose/role in project appraisal 28
 3.3.3 Best practice 28
 3.3.4 Recommendations 28
3.4 Discounting and intra-generational equity issues 29
 3.4.1 Definitions 29
 3.4.2 Purpose/role in project appraisal 29
 3.4.3 Existing practice at EC and national levels 30
 3.4.4 Best practice 31
 3.4.5 Recommendations 33
3.5 The project appraisal evaluation period 38
 3.5.1 Definitions 38
 3.5.2 Purpose/role in project appraisal 38
 3.5.3 Existing practice at EC and national levels 38
 3.5.4 Best practice 38
 3.5.5 Recommendations 39
3.6 Decision criteria 39
 3.6.1 Definitions 39
3.6.2 Purpose/role in project appraisal 40
3.6.3 Existing practice at EC and national levels 40
3.6.4 Best practice 40
3.6.5 Recommendations 44
3.7 Treatment of future risk and uncertainty 45
 3.7.1 Definitions 45
 3.7.2 Purpose/role in project appraisal 45
 3.7.3 Existing practice at EC and national levels 45
 3.7.4 Best practice 45
 3.7.5 Recommendations 47
3.8 The Marginal Costs of Public Funds 47
 3.8.1 Definitions 47
 3.8.2 Existing practice at EC and national levels 47
 3.8.3 Best practice 48
 3.8.4 Recommendations 48
3.9 Producer Surplus of Transport Providers 49
 3.9.1 Definitions 49
 3.9.2 Existing and Best practice 49
 3.9.3 Recommendations 49
3.10 Treatment of indirect socio-economic effects in European guidelines for transport appraisal 50
 3.10.1 Definitions 50
 3.10.2 Existing practice at EC and national levels 50
 3.10.3 Best practice 51
 3.10.4 Recommendations 51
3.11 Recommended Accounting procedures 52
3.12 Up-dating of values 52

4 Value of Time and Congestion 53
4.1 Purpose/role in project appraisal 53
4.2 Definition 53
4.3 Valuation Methodology 53
4.4 VTTS values 55
 4.4.1 Disaggregation 55
 4.4.2 Variation of Passenger VTTS with income 57
 4.4.3 Variation of Passenger VTTS with journey length 59
 4.4.4 Variation of Passenger VTTS by journey purpose 59
 4.4.5 Variation of Passenger VTTS by mode, walking, waiting, interchange and service frequency. 60
4.4.6 Variation of Commercial Goods Traffic VTTS 61
4.4.7 Size and sign of time savings 62
4.4.8 Treatment of values of travel time savings over time 63
4.4.9 Uncertainty in the VTTS value 64
4.5 Treatment of congestion 65
4.5.1 Reliability 66
4.5.2 Public transport overcrowding 68
4.5.3 Quality of travel experience 69
4.6 Implementation of VTTS Guidelines 70
4.6.1 Deriving VTTS for use in an appraisal 70
4.6.2 VTTS data requirements 78
4.6.3 VTTS in modelling and appraisal 80
4.6.4 Reporting and equity 80
5 Value of Changes in Accident Risks 81
5.1 Purpose/role in project appraisal 81
5.2 General Approach 81
5.2.1 Accident impacts considered 82
5.2.2 Estimating accident risks 82
5.2.3 Valuing accident costs 84
5.2.4 Recommended values 87
5.2.5 Treatment of values over time 89
5.2.6 Calculation procedure 90
6 Environmental Costs 91
6.1 Purpose/role in project appraisal 91
6.2 General Valuation Methodology 91
6.3 Air pollution 94
6.3.1 Derivation of impact and cost factors per unit pollutant emitted 95
6.3.2 Treatment of values over time 102
6.3.3 Calculation procedure 103
6.4 Noise 103
6.4.1 Noise impact assessment 104
6.4.2 Monetary Valuation 105
6.4.3 Treatment of values over time 115
6.4.4 Calculation procedure 115
6.5 Global warming 115
6.5.1 General approach 115
6.5.2 Monetary values 116
6.5.3 Treatment of values over time 117
List of Tables

Table 0.1 Recommended valuation methodologies. 4
Table 0.2 Reliability ratios (Source: Hamer et al. (2005), Kouwenhoven et al. (2005a)). 6
Table 0.3 Estimated VTTS values – work (business) passenger trips (€2002 per passenger per hour, factor prices) 9
Table 0.4 Estimated VTTS values – non-work passenger trips (€2002 per passenger per hour, factor prices) 10
Table 0.5 Estimated VTTS values – freight trips (€2002 per freight tonne per hour, factor prices) 11
Table 0.6 Estimated VTTS values – work (business) passenger trips (€2002 PPP per passenger per hour, factor prices) 12
Table 0.7 Estimated VTTS values – non-work passenger trips (€2002 PPP per passenger per hour, factor prices) 13
Table 0.8 Estimated VTTS values – freight trips (€2002 PPP per freight tonne per hour, factor prices) 14
Table 0.9 Recommendation for European average correction factors for unreported road accidents. 15
Table 0.10 Estimated values for casualties avoided. 16
Table 0.11 Cost factors for road transport emissions* per tonne of pollutant emitted in €2002 (factor prices). 19
Table 0.12 Cost factors for road transport emissions* per tonne of pollutant emitted in €2002 PPP (factor prices). 20
Table 0.13 Impact factors for road transport emissions* (lost life expectancy in years of life lost per 1000 tonnes of pollutant emitted). 21
Table 0.14 Cost factors for noise exposure for Finland (€2002, factor costs, per year per person exposed; to derive €2002 PPP the values below are divided by the Finnish PPP adjustment factor of 1.12). For values for all countries see main text. 23
Table 0.15 Impact indicator for noise exposure: percentage of adult persons highly annoyed per person (all ages) exposed – based on functions given in European Commission (2002), assuming 80% of population are adults. 24
Table 0.16 Shadow prices based on Watkiss et al. (2005b), converted from £2000/t C to €2002 (factor prices) per tonne of CO2 equivalent emitted – no PPP adjustment necessary as values are not country specific. 26
Table 0.17 Lifetimes by mode and group of components (road and rail). 28
Table 0.18 Applicable capital expenditure uplift (average cost escalation) 29
Table 0.19 Classification of cost categories into short run fixed costs and short run variable costs - Road and rail. 30
Table 0.20 Possible allocation factors for the allocation of variable costs to cost drivers. 31
Table 1.1 DG Regional Policy Guidelines, TINA, RAILPAG, HEATCO: a comparative overview. 5
Table 3.1 Example Distributional Matrix for a Transport Project Appraisal. 32
Table 3.2 Net present value (NPV) versus benefit cost ratio (BCR) 41
Table 3.3 The labelling of noise as costs or benefits determines the ranking list 41
Table 4.1 Recommended valuation methodologies. 54
Table 4.2 Recommended level of disaggregation for travel time savings. 57
Table 4.3 Reliability ratios. 67
Table 4.4 Approximating the underlying willingness-to-pay of traffic on the TEN-T. 71
Table 4.5 Recommended source for deriving passenger VTTS (based on 2004 survey of EU member states appraisal methodology). 72
Table 4.6 Estimated VTTS values – work (business) passenger trips (€2002 per passenger per hour, factor prices) 73
Table 4.7
Estimated VTTS values – non-work passenger trips (€2002 per passenger per hour, factor prices)

Table 4.8
Estimated VTTS values – freight trips (€2002 per freight tonne per hour, factor prices)

Table 4.9
Estimated VTTS values – work (business) passenger trips (€2002 PPP per passenger per hour, factor prices)

Table 4.10
Estimated VTTS values – non-work passenger trips (€2002 PPP per passenger per hour, factor prices)

Table 4.11
Estimated VTTS values – freight trips (€2002 PPP per freight tonne per hour, factor prices)

Table 4.12
Use of local data or benefit transfer procedures.

Table 5.1
Recommendation for European average correction factors for unreported road accidents.

Table 5.2

Table 5.3
Estimated values for casualties avoided (€2002 PPP, factor prices).

Table 6.1
Health and environmental effects for which exposure-response functions are established (source: European Commission, 2005).

Table 6.2
Cost factors for road transport emissions* per tonne of pollutant emitted in €2002 (factor prices).

Table 6.3
Cost factors for road transport emissions* per tonne of pollutant emitted in €2002 PPS (factor prices).

Table 6.4
Cost factors for electricity production emissions* per ton of pollutant emitted in €2002 (factor prices).

Table 6.5
Cost factors for electricity production emissions* per ton of pollutant emitted in €2002 PPS (factor prices).

Table 6.6
Impact factors for road transport emissions* (lost life expectancy in years of life lost per 1000 tonnes of pollutant emitted).

Table 6.7
Impact factors for electricity production emissions* (lost life expectancy in years of life lost per 1000 tonnes of pollutant emitted).

Table 6.8
Categorisation of effects and related impact categories (source: De Kluizenaar et al., 2001).

Table 6.9
Cost factors (Central values) for noise exposure (€2002, factor costs, per year per person exposed). High values and results for the new approach see Annex E.

Table 6.10
Cost factors (Central values) for noise exposure (€2002 PPP, factor costs, per year per person exposed). High values and results for the new approach see Annex E.

Table 6.11
Impact indicator for noise exposure: percentage of adult persons highly annoyed per person (all ages) exposed – based on functions in European Commission (2002), assuming 80% of population are adults.

Table 6.12
Shadow prices based on Watkiss et al. (2005b), converted from £2000/t C to €2002 (factor prices) per tonne of CO2 equivalent emitted.

Table 7.1
Lifetimes in years by mode and group of components (road and rail).

Table 7.2
Example 1: "No re-investments" (million €)

Table 7.3
Example 2: "Re-investments" (million €)

Table 7.4
Ideas to reduce uncertainty/cures to optimism-bias.

Table 7.5
Applicable capital expenditure uplift (average cost escalation)

Table 7.6
Classification of cost categories into short run fixed costs and short run variable costs - road and rail.

Table 7.7
Possible allocation factors for the allocation of variable costs to cost drivers.

Table 8.1
Approximating the underlying resource costs for operating vehicles on the TEN-T.
List of Figures

Figure 6.1 The Impact Pathway Approach for the quantification of environmental costs. 92
Figure 7.1 Whole life costing approach 120
Figure 7.2 Definition of optimism-bias uplifts within a certain class. Source: Based on the British Department for Transport (2004b, page 11) 128

Abbreviations

ATOC Association of Train Operating Companies
BCR Benefit-Cost Ratio
CBA Cost Benefit Assessment
EIA Environmental Impact Assessment
ESA Equivalent standard axles
FYRR First Year Rate of Return
GWP Global Warming Potential
HGV Heavy Goods Vehicle
IFI International financing institution
IPA Impact Pathway Approach
IRR Internal Rate of Return
IVT In Vehicle Time
LGV Light Goods Vehicle
MS Member States
NPV Net Present Value
PDFH Passenger Demand Forecasting Handbook (UK)
PPP Purchasing Power Parity
PVB Present Value of Benefits
PVC Present Value of Costs
RNPSS Ratio of NPV and Public Sector Support
VOC Vehicle Operating Costs
VSL Value of a Statistical Life
VTTS Value of Travel Time Savings
WTP Willingness to Pay
YOLL Years of Life Lost
0 Summary

0.1 Introduction

The objective of this document is to propose harmonised guidelines for project assessment for trans-national projects in Europe. This includes the provision of a consistent framework for monetary valuation based on the principles of welfare economics, contributing in the long run to consistency with transport costing. These guidelines have been developed within the EC funded research project HEATCO, based on latest research results on the different aspects of transport project appraisal and on an analysis of existing practice in the EU countries and Switzerland.

The review of existing practice documented in Odgaard et al. (2005) and further analysed in Bickel et al. (2005a) has shown considerable variation. In the context of selecting and financially supporting TEN-T projects, the need for consistent appraisal methodology arises. Thus, a consistent methodological framework for project appraisal has been developed and is described here. Apart from being used for TEN-T projects, it might also be used for other trans-national projects to ensure consistency across borders and the application of the state of the art methods. It is not the intention of HEATCO’s proposal for harmonised guidelines to stipulate methods and values for national projects, however in the long run these guidelines might help to achieve a more harmonised approach also for national appraisal methods.

This summary gives an overview of the recommendations for harmonised guidelines for infrastructure project appraisal covering the following elements:

- General issues (incl. non-market valuation techniques, benefit transfer, treatment of non-monetised impacts, discounting and intra-generational equity issues, decision criteria, the project appraisal evaluation period, treatment of future risk and uncertainty, the marginal costs of public funds, producer surplus of transport providers, the treatment of indirect socio-economic effects),
- Value of time and congestion (incl. business passenger traffic, non-work passenger traffic, commercial goods traffic time savings and treatment of congestion, unexpected delays and reliability),
- Value of changes in accident risks (incl. accident impacts considered, estimating accident risks, valuing accident costs),
- Environmental costs (incl. air pollution, noise, global warming),
- Costs and indirect impacts of infrastructure investments (incl. capital costs for project implementation, costs for maintenance, operation and administration, changes in infrastructure costs on existing networks, optimism bias, residual value).

Country-specific fall-back values are suggested for application in cases where no state-of-the-art national values are available for valuation of

- time and congestion,
- accident casualties,
- damage due to air pollution, noise and global warming.
0.2 General issues

When carrying out a Cost-Benefit Analysis (CBA), we recommend the following 15 general principles:

1. **Appraisal as a comparative tool.** To estimate the costs and benefits of a project, one has to compare costs and benefits between two scenarios: the ‘Do-Something’ scenario, where the project under assessment is realised, and a ‘Do-Minimum’ scenario, which needs to be a realistic base case describing the future development. If there are several project alternatives, one has to create a scenario for each alternative and compare them with the ‘Do-Minimum case’.

2. **Decision criteria.** We recommend the use of NPV (net present value) to determine, whether a project is beneficial or not. In addition, depending on the decision-making context respectively the question to be addressed, BCR (benefit cost ratio) and RNPSS (ratio of NPV and public sector support) decision rules could be used.

3. **The project appraisal evaluation period.** We recommend the use of a 40 year appraisal period, with residual effects being included, as a default evaluation period. Projects with a shorter lifetime should, however, use their actual length. For the comparison of potential future projects, a common final year should be determined by adding 40 years to the opening year of the last project.

4. **Treatment of future risk and uncertainty.** For the assessment of (non-probabilistic) uncertainty, we consider a sensitivity analysis or scenario technique as appropriate. If resources and data are available for probabilistic analysis, Monte Carlo simulation analysis can be undertaken.

5. **Discounting.** It is recommended to adopt the risk premium-free rate or weighted average of the rates currently used in national transport project appraisals in the countries in which the TEN-T project is to be located. The rates should be weighted with the proportion of total project finance contributed by the country concerned. In lower-bound sensitivity analyses, in order to reflect current estimates of the social time preference rate, a common discount rate of 3% should be utilised. For damage occurring beyond the 40 year appraisal period (intergenerational impacts), e.g. for climate change impacts, a declining discount rate system is recommended.

6. **Intra-generational equity issues.** We recommend, at minimum, that a “winners and losers” table should be developed, and presented alongside the results of the monetised CBA. Distributional matrices for alternative projects might be created and compared amongst each other. Additionally stakeholder analyses should be undertaken as well. It is recommended to use local values to assess unit benefit and cost measures.

7. **Non-market valuation techniques.** If impacts in transport project appraisals cannot be expressed in market prices, but are potentially significant in the overall appraisal, we recommend that – in the absence of robust transfer values – non-market techniques to estimate monetary values should be considered. We recommend that the choice of technique used to value individual impacts should be dictated by the type of impact and the nature of the project. However, Willingness to Pay (WTP) measures is preferable to cost-based measures. Values should be validated against existing European estimates.

8. **Value Transfer.** Value transfer means the use of economic impact estimates from previous studies to value similar impacts in the present appraisal context. Value transfers can be used when insufficient resources for new primary studies are available. The decision as to
whether to use unit transfers with income adjustments, value function transfer and/or meta-analyses will depend on the availability of existing values and experience to date with value transfers related to the impact in question.

9. **Treatment of non-monetised impacts.** We recommend, at a minimum, that if impacts cannot be expressed in monetary terms, they should be presented in qualitative or quantitative terms in addition to evidence on monetised impacts. If only a small number of non-monetised impacts can be assessed, sensitivity analysis may be used to indicate their potential importance. Alternatively, non-monetised impacts may also be included directly in the decision-making process by explicitly eliciting decision maker’s weights for them vis-à-vis monetised impacts.

10. **Treatment of indirect socio-economic effects.** We recommend that if indirect effects are likely to be significant, an economic model, preferably a Spatially Computable General Equilibrium (SCGE) model, should be used. Qualitative assessment is recommended, if indirect effects cannot be modelled due to limited resources (high costs for the use of advanced modelling), insufficient availability of data, or lack of appropriate quantitative models or unreliable results.

11. **Marginal Cost of Public Funds.** Our recommendation is to assume a marginal cost of public funds of 1, i.e. not to use any additional cost (shadow price) for public funds. Instead, a cut-off value for the RNPSS of 1.5 should be used when relevant.

12. **Producer Surplus of Transport Providers.** We recommend to estimate (changes in) the producer surplus generated by changed traffic volumes or by the introduction and adjustment of transport pricing regimes.

13. **Accounting procedures.** a) Factor costs should be the adopted unit of account. This requires measures expressed in market prices - which include indirect taxes and subsidies – to be converted to factor costs. b) We recommend to convert all monetary values into € with a price level for a fixed year. In this report, monetary values are given as €2002, i.e. with 2002 as base year. However, the monetary values should be adjusted with the Purchasing Power Parity (PPP) as explained in Annex B, which also contains a table with PPP adjustment factors. However, these factors are only available for past years, whilst future PPP factors are likely to change as the economic growth rates differ amongst countries. As we assume, that income and prices grow faster in Member States with currently low income, PPP factors will tend to converge closer to 1 in the future. Therefore, we recommend that two calculations are made – one with and one without PPP adjustment – assuming that the true value will lie between the two results. c) Monetary values, i.e. preferences, for non-market goods like reduced risk of getting ill or reduced damage to the environment will increase with increasing income; thus we recommend increasing monetary values based on GDP growth – a table with possible country-specific GDP growth is given in Annex B.

14. **Up-dating of values.** The unit values supplied in this report represent the state-of-the-art for the individual impacts addressed. Nevertheless, all values will be subject to change as new empirical evidence becomes available and methodological developments take place. As a consequence, we recommend that values are reviewed and up-dated on a regular basis e.g. after three years at maximum.

15. **Presentation of results.** As far as possible, impacts should be expressed in both physical and monetary terms. The results of the sensitivity analysis and the non-monetised impacts should be reported together with the central monetised results.
0.3 Value of time and congestion

0.3.1 Valuation Methodology

The underlying principle in the VTTS (value of travel time savings) guidelines is that local values should be used wherever possible, provided that they have been developed using an appropriate methodology. If no such local values exist then ‘default’ or ‘fallback’ values derived from international meta-analyses of value of time studies should be used. These fallback values are set out in Table 0.3, Table 0.4 and Table 0.5.

Economic theory suggests that different methods of valuation for VTTS should be used for passenger trips during work, that is to say on employer’s business, for passenger-non-work trips, that is for commuting, shopping and leisure purposes, and for commercial goods traffic. As set out in Table 0.1 for each of these purposes we recommend a minimum acceptable methodology for the valuation of time savings. The cost saving approach for employer’s business and commercial traffic is based on a theoretical argument regarding the marginal productivity of labour. Such an approach assumes no utility impact on the worker and that all travel time savings can be transferred to productive output. The more sophisticated Hensher approach (Hensher, 1977) allows for the fact that not all travel time is unproductive and not all savings are transferred to extra work. Willingness-to-pay surveys are based on either the revealed or stated preferences of individuals.

Table 0.1 Recommended valuation methodologies.

<table>
<thead>
<tr>
<th>Trip Purpose</th>
<th>Minimum approach¹</th>
<th>More sophisticated approach</th>
</tr>
</thead>
<tbody>
<tr>
<td>Passenger – work</td>
<td>Cost saving</td>
<td>Hensher approach</td>
</tr>
<tr>
<td>Passenger – non-work</td>
<td></td>
<td>Willingness-to-pay</td>
</tr>
<tr>
<td>Commercial Goods traffic</td>
<td>Cost saving</td>
<td>Willingness-to-pay</td>
</tr>
</tbody>
</table>

¹ In the absence of sufficient resources to survey VTTS using the minimum approach the mathematical relationships derived from the HEATCO VTTS meta-analysis should be used.

0.3.2 VTTS values

Disaggregation

At a minimum, VTTS values should be disaggregated between passenger-work, passenger-non-work and commercial goods traffic. This is recommended because different valuation methods are used to calculate VTTS values for each of these purposes. Furthermore, due to the very different functions served by the various transport modes when transporting freight, commercial goods traffic should be disaggregated by mode at a minimum. For more sophisticated appraisals passenger VTTS could be disaggregated by mode and/or distance. A more data intensive and refined level of disaggregation would be to disaggregate by trip purpose, income, journey length and modal comfort. Disaggregation by income is strongly recommended for major infrastructure projects or projects that involve some form of user charging (totted motorways, high speed rail, etc.). In such cases, consistency between values used in demand modelling and appraisal is required.
Walk, wait and interchange
In the absence of local data on travel time savings for walking, waiting and interchange, in-vehicle time should be weighted in order to reflect the additional willingness-to-pay for time savings. In-vehicle time should be weighted by 2 for walking time and 2.5 for waiting and interchange (or transfer) time.

Average waiting times for public transport services will vary systematically with the headway of the services. At high frequencies passengers arrive at random and the average idle time is half the headway. It is recommended that the modelling exercise explicitly models average waiting periods associated with the different service frequencies, and this time should be included in the appraisal weighted with a factor of 2.5. At lower frequencies arrival rates are not at random and average waiting times do not fully capture all the costs or benefits of a change in frequency. More complex appraisals may consider surveying values for these disbenefits which are often termed ‘inconvenience’ or ‘scheduling’ cost.

Sophisticated techniques exist for modelling and valuing the impact of travel times on many of the attributes associated with public transport (e.g. provision of information, seating whilst waiting, etc.). If the impact of such measures are to be modelled and valued the practitioner is referred to country appraisal manuals such as the Passenger Demand Forecasting Handbook (PFDH) in the UK (ATOC, 2002). It is outside the scope of these guidelines to provide such detailed advice.

Treatment of small time savings and sign of time saving
We recommend that a constant unit value for VTTS (i.e. per hour, per minute, per second) should be applied irrespective of the size or algebraic sign of the time saving. However, given the potential for errors in the measurement of small time savings within a transport model, we recommend that the proportion of the economic benefits derived from time savings attributable to small time savings (less than 3 minutes) is assessed.

Treatment of VTTS over time
For the estimation of future values of VTTS, we recommend to adjust the VTTS using an adjusted per capital growth rate of GDP. For the adjustment - in the absence of local data - a default inter-temporal elasticity to GDP per capita growth of 0.7 is recommended, with a sensitivity test at 1.0 (for all passenger travel purposes, work and non-work and also for commercial goods traffic).

0.3.3 Treatment of Congestion
Congestion can affect the performance and quality of the transport system in a number of ways: increased travel times; overcrowding in public transport; deterioration of the ‘driving experience’ with stop-start conditions; and reliability problems. The understanding is limited of people’s preferences and the ability to model the effects brought about by a change in the transport system on many of these characteristics (except for increased average travel times). The technical challenge posed by modelling changes in reliability with existing methods and software cannot be overstated. At least a modelling system with a representation of space and time is required - congestion usually only affects certain parts of the transport network at
certain times of the day. The detailed representation of space and time within a modelling system can sometimes be at odds with the modelling simplifications necessary to analyse long distance (cross-European) trips that would be associated with the TEN-T.

Given the ready availability of data and tools to model the impacts of congestion it is felt that an appraisal should at least include changes in average travel times as a consequence of changing levels of congestion. More sophisticated appraisals, however, should consider the other impacts of congestion if data allow for.

Broadly speaking, there are two mutually exclusive approaches to modelling and appraising the reliability and quality impacts of congestion:

- **Bottom-up approach** - where each of the impacts is modelled separately. With this approach we recommend using:
 - Reliability: the standard deviation of the travel time can be used as the definition of reliability. Table 0.2 sets out the reliability ratios, which we recommend using in the absence of local data.
 - Quality: For public transport we recommend that a value of 1.5 times that of standard in-vehicle-time is used for passengers on public transport who have to stand in overcrowded conditions. There is insufficient evidence on the individual components that comprise quality of the driving experience in congested conditions to make a recommendation on such values.

- **Top-down approach** – where an aggregate transport indicator is used to reflect a variety of reliability and quality conditions. Within this approach we recommend using:
 - Road: if the volume to capacity ratio for a link is in excess of 1.0 then travel time could be valued at 1.5 times standard in-vehicle-time. Such a value represents a conflation of reliability and quality impacts.
 - Public transport: an alternative to explicitly modelling public transport reliability is to value average ‘delay’ or ‘lateness’ of services. In this situation we recommend using a VTTS value that is equivalent to that of waiting time (i.e. 2.5 times in-vehicle-time). Quality impacts associated with overcrowding are additional effects and therefore can also be included in the appraisal if this approach is adopted.

Table 0.2 Reliability ratios (Source: Hamer et al. (2005), Kouwenhoven et al. (2005a)).

<table>
<thead>
<tr>
<th>Journey purpose</th>
<th>Mode</th>
<th>Reliability ratio*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Commuting (passenger)</td>
<td>Car</td>
<td>0.8</td>
</tr>
<tr>
<td>Business (passenger)</td>
<td>Car</td>
<td>0.8</td>
</tr>
<tr>
<td>Other (passenger)</td>
<td>Car</td>
<td>0.8</td>
</tr>
<tr>
<td>All (passenger)</td>
<td>Train</td>
<td>1.4</td>
</tr>
<tr>
<td>All (passenger)</td>
<td>Bus/tram/metro</td>
<td>1.4</td>
</tr>
<tr>
<td>Commercial Goods Traffic</td>
<td>Road</td>
<td>1.2</td>
</tr>
</tbody>
</table>

*The reliability ratio is the ratio of the value of one minute of standard deviation (i.e. value of reliability) to the value of one minute of average travel time.
There is little data on the value of congested conditions in airports, in train stations, on board airplanes and on board ships. If such conditions are considered important to the appraisal, it is recommended that local values are surveyed as part of the study.

0.3.4 Treatment of Uncertainty in VTTS values

Section 1.2 above identifies the recommendations for managing risk and uncertainty in an appraisal. As part of that analysis a number of sensitivity tests need to be undertaken. The following sensitivity tests for VTTS are recommended:

- VTTS values
 - Local willingness-to-pay survey: if VTTS values for the appraisal are derived from a local willingness-to-pay survey, then the appraisal results should be sensitivity tested to the upper and lower limits of the 95% confidence interval of the local VTTS values or +/- 10% whichever is larger.
 - National VTTS values: if the appraisal is conducted using values set out in the national appraisal guidance then the appraisal results should be sensitivity tested using values +/-20% of national VTTS values.
 - Benefit transfer: if the VTTS values have been derived from some form of benefit transfer procedure – such as the HEATCO meta-analysis – we recommend sensitivity testing the appraisal using values +/-40% of the benefit transfer values.

- Treatment of VTTS over time: uncertainty regarding the elasticity of GDP/capita growth implies that growth in VTTS over time should be sensitivity tested to elasticity to GDP/capita growth of 1.0.

- Small time savings: given the potential for errors in the measurement of small time savings within a transport model, the appraisal should be sensitivity tested by excluding time savings (positive and negative) below 3 minutes.

0.3.5 Implementation of VTTS Guidelines

The underlying principle regarding the implementation of the above guidelines is that values of travel time savings used in an appraisal should:

(i) be developed according to the minimum standards set out above; and

(ii) reflect the underlying willingness-to-pay (WTP) of the users of the transport network in the vicinity of the scheme and on the parts of the transport network(s) affected by the scheme.

The implication of this is that users of the transport system should be allocated a willingness-to-pay that reflects incomes, journey lengths and trip purposes. This may result in attributing national VTTS values. Obviously a trade-off exists between sophistication and the practicality of implementing a sophisticated approach in any particular country. Additionally, the effort which the analyst endures to obtain values that represent the underlying willingness-to-pay should also reflect the scale of the scheme: Obviously greater efforts should be made for large schemes with significant capital costs than for small schemes, where reasonable approximations to the underlying WTP maybe made. Some EU countries have well developed appraisal frameworks with large quantities of data available to the analyst whilst others do
The calculation of the economic benefits associated with travel time savings is very straightforward. In essence it is the product of the five items of data:

(i) **Demand** - the number of passengers/vehicles/goods traffic making a particular origin-destination trip in the Scenario “Do Minimum” (D₀) and in the Scenario “Do Something” (D₁);

(ii) **Time saving** – the time saving experienced by the users making that particular origin-destination trip (T₀-T₁); and

(iii) **VTTS** – the value of the travel time saving (for that segment of traffic)

The travel time saving element of the consumer surplus for that origin-destination trip is calculated using the rule of a half (see Chapter 4):

\[
\frac{1}{2}(D₀+D₁) *(T₀-T₁) * VTTS
\]

The total user benefit from travel time savings is the sum of all time saving related consumer surpluses for all origin-destination movements.

Some vehicle operating cost models for commercial goods vehicles and business traffic include the time elements of the journey (e.g. driver and crew wages). Care should be taken in such situations to avoid double counting this component in both time and vehicle operating cost benefits, both in modelling and appraisal.

It is our recommendation that modelling and appraisal values should reflect the same underlying willingness-to-pay of the transport users and should only differ in their unit of account. Basing values of time within an appraisal on underlying willingness-to-pay has implications for the equitable treatment of people with different incomes within the appraisal framework. It is therefore recommended that the analyst in addition to reporting the aggregate monetised travel time savings benefits also reports the absolute time savings and the income brackets of the users to whom they accrue.
Table 0.3 Estimated VTTS values – work (business) passenger trips (€2002 per passenger per hour, factor prices)

<table>
<thead>
<tr>
<th>Country</th>
<th>Air</th>
<th>Bus</th>
<th>Car, Train</th>
</tr>
</thead>
<tbody>
<tr>
<td>Austria</td>
<td>39.11</td>
<td>22.79</td>
<td>28.40</td>
</tr>
<tr>
<td>Belgium</td>
<td>37.79</td>
<td>22.03</td>
<td>27.44</td>
</tr>
<tr>
<td>Cyprus</td>
<td>29.04</td>
<td>16.92</td>
<td>21.08</td>
</tr>
<tr>
<td>Czech Republic</td>
<td>19.65</td>
<td>11.45</td>
<td>14.27</td>
</tr>
<tr>
<td>Denmark</td>
<td>43.43</td>
<td>25.31</td>
<td>31.54</td>
</tr>
<tr>
<td>Estonia</td>
<td>17.66</td>
<td>10.30</td>
<td>12.82</td>
</tr>
<tr>
<td>Finland</td>
<td>38.77</td>
<td>22.59</td>
<td>28.15</td>
</tr>
<tr>
<td>France</td>
<td>38.14</td>
<td>22.23</td>
<td>27.70</td>
</tr>
<tr>
<td>Germany</td>
<td>38.37</td>
<td>22.35</td>
<td>27.86</td>
</tr>
<tr>
<td>Greece</td>
<td>26.74</td>
<td>15.59</td>
<td>19.42</td>
</tr>
<tr>
<td>Hungary</td>
<td>18.62</td>
<td>10.85</td>
<td>13.52</td>
</tr>
<tr>
<td>Ireland</td>
<td>41.14</td>
<td>23.97</td>
<td>29.87</td>
</tr>
<tr>
<td>Italy</td>
<td>35.29</td>
<td>20.57</td>
<td>25.63</td>
</tr>
<tr>
<td>Latvia</td>
<td>16.15</td>
<td>9.41</td>
<td>11.73</td>
</tr>
<tr>
<td>Lithuania</td>
<td>15.95</td>
<td>9.29</td>
<td>11.58</td>
</tr>
<tr>
<td>Luxembourg</td>
<td>52.36</td>
<td>30.51</td>
<td>38.02</td>
</tr>
<tr>
<td>Malta</td>
<td>25.67</td>
<td>14.96</td>
<td>18.64</td>
</tr>
<tr>
<td>Netherlands</td>
<td>38.56</td>
<td>22.47</td>
<td>28.00</td>
</tr>
<tr>
<td>Poland</td>
<td>17.72</td>
<td>10.33</td>
<td>12.87</td>
</tr>
<tr>
<td>Portugal</td>
<td>26.63</td>
<td>15.52</td>
<td>19.34</td>
</tr>
<tr>
<td>Slovakia</td>
<td>17.02</td>
<td>9.92</td>
<td>12.36</td>
</tr>
<tr>
<td>Slovenia</td>
<td>25.88</td>
<td>15.08</td>
<td>18.80</td>
</tr>
<tr>
<td>Spain</td>
<td>30.77</td>
<td>17.93</td>
<td>22.34</td>
</tr>
<tr>
<td>Sweden</td>
<td>41.72</td>
<td>24.32</td>
<td>30.30</td>
</tr>
<tr>
<td>United Kingdom</td>
<td>39.97</td>
<td>23.29</td>
<td>29.02</td>
</tr>
<tr>
<td>EU (25 Countries)</td>
<td>32.80</td>
<td>19.11</td>
<td>23.82</td>
</tr>
<tr>
<td>Switzerland</td>
<td>45.41</td>
<td>26.47</td>
<td>32.97</td>
</tr>
</tbody>
</table>
Table 0.4 Estimated VTTS values – non-work passenger trips (€2002 per passenger per hour, factor prices)

<table>
<thead>
<tr>
<th>Country</th>
<th>Commute-Short Distance Air</th>
<th>Commute-Short Distance Bus</th>
<th>Commute-Short Distance Car, train</th>
<th>Commute-Long Distance Air</th>
<th>Commute-Long Distance Bus</th>
<th>Commute-Long Distance Car, train</th>
<th>Other-Short Distance Air</th>
<th>Other-Short Distance Bus</th>
<th>Other-Short Distance Car, train</th>
<th>Other-Long Distance Air</th>
<th>Other-Long Distance Bus</th>
<th>Other-Long Distance Car, train</th>
</tr>
</thead>
<tbody>
<tr>
<td>Austria</td>
<td>11.98</td>
<td>5.78</td>
<td>8.03</td>
<td>15.40</td>
<td>7.42</td>
<td>10.32</td>
<td>10.05</td>
<td>4.84</td>
<td>6.73</td>
<td>12.91</td>
<td>6.22</td>
<td>8.65</td>
</tr>
<tr>
<td>Cyprus</td>
<td>11.83</td>
<td>5.70</td>
<td>7.93</td>
<td>15.18</td>
<td>7.32</td>
<td>10.18</td>
<td>9.92</td>
<td>4.78</td>
<td>6.65</td>
<td>12.74</td>
<td>6.14</td>
<td>8.53</td>
</tr>
<tr>
<td>Czech Republic</td>
<td>8.57</td>
<td>4.13</td>
<td>5.75</td>
<td>11.00</td>
<td>5.31</td>
<td>7.38</td>
<td>7.19</td>
<td>3.46</td>
<td>4.82</td>
<td>9.23</td>
<td>4.45</td>
<td>6.18</td>
</tr>
<tr>
<td>Denmark</td>
<td>12.64</td>
<td>6.09</td>
<td>8.48</td>
<td>16.23</td>
<td>7.82</td>
<td>10.88</td>
<td>10.60</td>
<td>5.11</td>
<td>7.11</td>
<td>13.61</td>
<td>6.56</td>
<td>9.12</td>
</tr>
<tr>
<td>Finland</td>
<td>11.31</td>
<td>5.45</td>
<td>7.58</td>
<td>14.52</td>
<td>7.00</td>
<td>9.73</td>
<td>9.48</td>
<td>4.57</td>
<td>6.36</td>
<td>12.17</td>
<td>5.87</td>
<td>8.16</td>
</tr>
<tr>
<td>France</td>
<td>16.34</td>
<td>7.87</td>
<td>10.95</td>
<td>20.97</td>
<td>10.11</td>
<td>14.06</td>
<td>13.70</td>
<td>6.60</td>
<td>9.18</td>
<td>17.58</td>
<td>8.47</td>
<td>11.79</td>
</tr>
<tr>
<td>Germany</td>
<td>11.99</td>
<td>5.78</td>
<td>8.04</td>
<td>15.40</td>
<td>7.42</td>
<td>10.32</td>
<td>10.05</td>
<td>4.85</td>
<td>6.74</td>
<td>12.91</td>
<td>6.22</td>
<td>8.65</td>
</tr>
<tr>
<td>Greece</td>
<td>10.34</td>
<td>4.98</td>
<td>6.93</td>
<td>13.28</td>
<td>6.40</td>
<td>8.90</td>
<td>8.67</td>
<td>4.18</td>
<td>5.82</td>
<td>11.14</td>
<td>5.37</td>
<td>7.46</td>
</tr>
<tr>
<td>Hungary</td>
<td>7.53</td>
<td>3.63</td>
<td>5.05</td>
<td>9.68</td>
<td>4.66</td>
<td>6.48</td>
<td>6.31</td>
<td>3.04</td>
<td>4.23</td>
<td>8.11</td>
<td>3.91</td>
<td>5.44</td>
</tr>
<tr>
<td>Ireland</td>
<td>12.51</td>
<td>6.03</td>
<td>8.39</td>
<td>16.07</td>
<td>7.74</td>
<td>10.77</td>
<td>10.49</td>
<td>5.06</td>
<td>7.04</td>
<td>13.48</td>
<td>6.49</td>
<td>9.03</td>
</tr>
<tr>
<td>Latvia</td>
<td>6.79</td>
<td>3.27</td>
<td>4.55</td>
<td>8.72</td>
<td>4.20</td>
<td>5.85</td>
<td>5.69</td>
<td>2.74</td>
<td>3.82</td>
<td>7.31</td>
<td>3.52</td>
<td>4.90</td>
</tr>
<tr>
<td>Lithuania</td>
<td>6.62</td>
<td>3.19</td>
<td>4.43</td>
<td>8.49</td>
<td>4.09</td>
<td>5.69</td>
<td>5.55</td>
<td>2.67</td>
<td>3.72</td>
<td>7.12</td>
<td>3.43</td>
<td>4.77</td>
</tr>
<tr>
<td>Luxembourg</td>
<td>17.77</td>
<td>8.60</td>
<td>11.91</td>
<td>22.82</td>
<td>11.00</td>
<td>15.30</td>
<td>14.90</td>
<td>7.18</td>
<td>9.99</td>
<td>19.13</td>
<td>9.22</td>
<td>12.83</td>
</tr>
<tr>
<td>Malta</td>
<td>9.73</td>
<td>4.69</td>
<td>6.53</td>
<td>12.50</td>
<td>6.02</td>
<td>8.37</td>
<td>8.17</td>
<td>3.93</td>
<td>5.47</td>
<td>10.48</td>
<td>5.05</td>
<td>7.02</td>
</tr>
<tr>
<td>Poland</td>
<td>7.36</td>
<td>3.55</td>
<td>4.94</td>
<td>9.46</td>
<td>4.56</td>
<td>6.34</td>
<td>6.17</td>
<td>2.97</td>
<td>4.14</td>
<td>7.93</td>
<td>3.82</td>
<td>5.32</td>
</tr>
<tr>
<td>Portugal</td>
<td>9.97</td>
<td>4.81</td>
<td>6.69</td>
<td>12.81</td>
<td>6.18</td>
<td>8.59</td>
<td>8.36</td>
<td>4.03</td>
<td>5.61</td>
<td>10.74</td>
<td>5.17</td>
<td>7.20</td>
</tr>
<tr>
<td>Slovakia</td>
<td>6.87</td>
<td>3.31</td>
<td>4.60</td>
<td>8.82</td>
<td>4.25</td>
<td>5.91</td>
<td>5.76</td>
<td>2.78</td>
<td>3.86</td>
<td>7.40</td>
<td>3.57</td>
<td>4.96</td>
</tr>
<tr>
<td>Slovenia</td>
<td>12.00</td>
<td>5.78</td>
<td>8.04</td>
<td>15.40</td>
<td>7.42</td>
<td>10.33</td>
<td>10.06</td>
<td>4.85</td>
<td>6.74</td>
<td>12.92</td>
<td>6.22</td>
<td>8.66</td>
</tr>
<tr>
<td>United Kingdom</td>
<td>12.44</td>
<td>5.99</td>
<td>8.34</td>
<td>15.97</td>
<td>7.69</td>
<td>10.70</td>
<td>10.43</td>
<td>5.02</td>
<td>6.99</td>
<td>13.39</td>
<td>6.46</td>
<td>8.98</td>
</tr>
<tr>
<td>Switzerland</td>
<td>16.74</td>
<td>8.06</td>
<td>11.22</td>
<td>21.49</td>
<td>10.36</td>
<td>14.41</td>
<td>14.03</td>
<td>6.76</td>
<td>9.40</td>
<td>18.02</td>
<td>8.69</td>
<td>12.08</td>
</tr>
</tbody>
</table>
Table 0.5 Estimated VTTS values – freight trips (€_{2002} per freight tonne per hour, factor prices)

<table>
<thead>
<tr>
<th>Country</th>
<th>Per tonne of freight carried<sup>1</sup></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Road</td>
<td>Rail</td>
<td></td>
</tr>
<tr>
<td>Austria</td>
<td>3.37</td>
<td>1.38</td>
<td></td>
</tr>
<tr>
<td>Belgium</td>
<td>3.29</td>
<td>1.35</td>
<td></td>
</tr>
<tr>
<td>Cyprus</td>
<td>2.73</td>
<td>1.12</td>
<td></td>
</tr>
<tr>
<td>Czech Republic</td>
<td>2.06</td>
<td>0.84</td>
<td></td>
</tr>
<tr>
<td>Denmark</td>
<td>3.63</td>
<td>1.49</td>
<td></td>
</tr>
<tr>
<td>Estonia</td>
<td>1.90</td>
<td>0.78</td>
<td></td>
</tr>
<tr>
<td>Finland</td>
<td>3.34</td>
<td>1.37</td>
<td></td>
</tr>
<tr>
<td>France</td>
<td>3.32</td>
<td>1.36</td>
<td></td>
</tr>
<tr>
<td>Germany</td>
<td>3.34</td>
<td>1.37</td>
<td></td>
</tr>
<tr>
<td>Greece</td>
<td>2.55</td>
<td>1.05</td>
<td></td>
</tr>
<tr>
<td>Hungary</td>
<td>1.99</td>
<td>0.82</td>
<td></td>
</tr>
<tr>
<td>Ireland</td>
<td>3.48</td>
<td>1.43</td>
<td></td>
</tr>
<tr>
<td>Italy</td>
<td>3.14</td>
<td>1.30</td>
<td></td>
</tr>
<tr>
<td>Latvia</td>
<td>1.78</td>
<td>0.73</td>
<td></td>
</tr>
<tr>
<td>Lithuania</td>
<td>1.76</td>
<td>0.72</td>
<td></td>
</tr>
<tr>
<td>Luxembourg</td>
<td>4.14</td>
<td>1.70</td>
<td></td>
</tr>
<tr>
<td>Malta</td>
<td>2.52</td>
<td>1.04</td>
<td></td>
</tr>
<tr>
<td>Netherlands</td>
<td>3.35</td>
<td>1.38</td>
<td></td>
</tr>
<tr>
<td>Poland</td>
<td>1.92</td>
<td>0.78</td>
<td></td>
</tr>
<tr>
<td>Portugal</td>
<td>2.58</td>
<td>1.06</td>
<td></td>
</tr>
<tr>
<td>Slovakia</td>
<td>1.86</td>
<td>0.77</td>
<td></td>
</tr>
<tr>
<td>Slovenia</td>
<td>2.51</td>
<td>1.03</td>
<td></td>
</tr>
<tr>
<td>Spain</td>
<td>2.84</td>
<td>1.17</td>
<td></td>
</tr>
<tr>
<td>Sweden</td>
<td>3.53</td>
<td>1.45</td>
<td></td>
</tr>
<tr>
<td>United Kingdom</td>
<td>3.42</td>
<td>1.40</td>
<td></td>
</tr>
<tr>
<td>EU (25 Countries)</td>
<td>2.98</td>
<td>1.22</td>
<td></td>
</tr>
<tr>
<td>Switzerland</td>
<td>3.75</td>
<td>1.54</td>
<td></td>
</tr>
</tbody>
</table>

¹ Value per tonne of freight carried and not for the maximum load of the vehicle or the weight of the vehicle.
Table 0.6

Estimated VTTS values – work (business) passenger trips (€2002 PPP per passenger per hour, factor prices)

<table>
<thead>
<tr>
<th>Country</th>
<th>Air</th>
<th>Bus</th>
<th>Car, train</th>
</tr>
</thead>
<tbody>
<tr>
<td>Austria</td>
<td>37.50</td>
<td>21.85</td>
<td>27.23</td>
</tr>
<tr>
<td>Belgium</td>
<td>36.94</td>
<td>21.53</td>
<td>26.82</td>
</tr>
<tr>
<td>Cyprus</td>
<td>32.92</td>
<td>19.18</td>
<td>23.90</td>
</tr>
<tr>
<td>Czech Republic</td>
<td>36.59</td>
<td>21.31</td>
<td>26.57</td>
</tr>
<tr>
<td>Denmark</td>
<td>33.05</td>
<td>19.26</td>
<td>24.00</td>
</tr>
<tr>
<td>Estonia</td>
<td>31.76</td>
<td>18.52</td>
<td>23.07</td>
</tr>
<tr>
<td>Finland</td>
<td>34.61</td>
<td>20.17</td>
<td>25.13</td>
</tr>
<tr>
<td>France</td>
<td>36.57</td>
<td>21.31</td>
<td>26.56</td>
</tr>
<tr>
<td>Germany</td>
<td>34.53</td>
<td>20.12</td>
<td>25.07</td>
</tr>
<tr>
<td>Greece</td>
<td>34.07</td>
<td>19.86</td>
<td>24.74</td>
</tr>
<tr>
<td>Hungary</td>
<td>34.05</td>
<td>19.84</td>
<td>24.72</td>
</tr>
<tr>
<td>Ireland</td>
<td>35.43</td>
<td>20.65</td>
<td>25.73</td>
</tr>
<tr>
<td>Italy</td>
<td>36.91</td>
<td>21.51</td>
<td>26.81</td>
</tr>
<tr>
<td>Latvia</td>
<td>31.79</td>
<td>18.53</td>
<td>23.09</td>
</tr>
<tr>
<td>Lithuania</td>
<td>33.31</td>
<td>19.39</td>
<td>24.17</td>
</tr>
<tr>
<td>Luxembourg</td>
<td>46.14</td>
<td>26.88</td>
<td>33.50</td>
</tr>
<tr>
<td>Malta</td>
<td>36.99</td>
<td>21.56</td>
<td>26.85</td>
</tr>
<tr>
<td>Netherlands</td>
<td>36.13</td>
<td>21.06</td>
<td>26.24</td>
</tr>
<tr>
<td>Poland</td>
<td>32.34</td>
<td>18.85</td>
<td>23.48</td>
</tr>
<tr>
<td>Portugal</td>
<td>34.91</td>
<td>20.34</td>
<td>25.34</td>
</tr>
<tr>
<td>Slovakia</td>
<td>38.67</td>
<td>22.54</td>
<td>28.09</td>
</tr>
<tr>
<td>Slovenia</td>
<td>34.98</td>
<td>20.38</td>
<td>25.40</td>
</tr>
<tr>
<td>Spain</td>
<td>35.74</td>
<td>20.83</td>
<td>25.95</td>
</tr>
<tr>
<td>Sweden</td>
<td>35.24</td>
<td>20.54</td>
<td>25.59</td>
</tr>
<tr>
<td>United Kingdom</td>
<td>35.56</td>
<td>20.72</td>
<td>25.82</td>
</tr>
<tr>
<td>EU (25 Countries)</td>
<td>32.80</td>
<td>19.11</td>
<td>23.82</td>
</tr>
<tr>
<td>Switzerland</td>
<td>31.87</td>
<td>18.57</td>
<td>23.14</td>
</tr>
</tbody>
</table>
Table 0.7 Estimated VTTS values – non-work passenger trips (€2002 PPP per passenger per hour, factor prices)

<table>
<thead>
<tr>
<th>Country</th>
<th>Commute-Short Distance</th>
<th>Commute-Long Distance</th>
<th>Other-Short Distance</th>
<th>Other-Long Distance</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Air</td>
<td>Bus</td>
<td>Car, train</td>
<td>Air</td>
</tr>
<tr>
<td>Austria</td>
<td>11.49</td>
<td>5.54</td>
<td>7.70</td>
<td>14.76</td>
</tr>
<tr>
<td>Belgium</td>
<td>11.18</td>
<td>5.38</td>
<td>7.50</td>
<td>14.35</td>
</tr>
<tr>
<td>Cyprus</td>
<td>13.41</td>
<td>6.46</td>
<td>8.99</td>
<td>17.22</td>
</tr>
<tr>
<td>Czech Republic</td>
<td>15.97</td>
<td>7.70</td>
<td>10.70</td>
<td>20.49</td>
</tr>
<tr>
<td>Denmark</td>
<td>9.62</td>
<td>4.64</td>
<td>6.45</td>
<td>12.35</td>
</tr>
<tr>
<td>Estonia</td>
<td>13.37</td>
<td>6.44</td>
<td>8.97</td>
<td>17.18</td>
</tr>
<tr>
<td>Finland</td>
<td>10.10</td>
<td>4.87</td>
<td>6.77</td>
<td>12.96</td>
</tr>
<tr>
<td>Germany</td>
<td>10.80</td>
<td>5.20</td>
<td>7.23</td>
<td>13.86</td>
</tr>
<tr>
<td>Greece</td>
<td>13.18</td>
<td>6.35</td>
<td>8.83</td>
<td>16.92</td>
</tr>
<tr>
<td>Hungary</td>
<td>13.77</td>
<td>6.64</td>
<td>9.24</td>
<td>17.69</td>
</tr>
<tr>
<td>Ireland</td>
<td>10.78</td>
<td>5.19</td>
<td>7.23</td>
<td>13.84</td>
</tr>
<tr>
<td>Italy</td>
<td>15.86</td>
<td>7.64</td>
<td>10.63</td>
<td>20.36</td>
</tr>
<tr>
<td>Malta</td>
<td>14.03</td>
<td>6.76</td>
<td>9.40</td>
<td>18.01</td>
</tr>
<tr>
<td>Netherlands</td>
<td>10.86</td>
<td>5.24</td>
<td>7.28</td>
<td>13.95</td>
</tr>
<tr>
<td>Poland</td>
<td>13.44</td>
<td>6.48</td>
<td>9.01</td>
<td>17.26</td>
</tr>
<tr>
<td>Portugal</td>
<td>13.07</td>
<td>6.30</td>
<td>8.77</td>
<td>16.79</td>
</tr>
<tr>
<td>Slovenia</td>
<td>16.21</td>
<td>7.82</td>
<td>10.87</td>
<td>20.82</td>
</tr>
<tr>
<td>Sweden</td>
<td>10.34</td>
<td>4.98</td>
<td>6.93</td>
<td>13.27</td>
</tr>
<tr>
<td>Switzerland</td>
<td>11.75</td>
<td>5.66</td>
<td>7.88</td>
<td>15.08</td>
</tr>
</tbody>
</table>
Table 0.8 Estimated VTTS values – freight trips (€\textsubscript{2002} PPP per freight tonne per hour, factor prices)

<table>
<thead>
<tr>
<th>Country</th>
<th>Per tonne of freight carried(^1)</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Road</td>
<td>Rail</td>
</tr>
<tr>
<td>Austria</td>
<td>3.23</td>
<td>1.33</td>
</tr>
<tr>
<td>Belgium</td>
<td>3.22</td>
<td>1.32</td>
</tr>
<tr>
<td>Cyprus</td>
<td>3.10</td>
<td>1.27</td>
</tr>
<tr>
<td>Czech Republic</td>
<td>3.83</td>
<td>1.57</td>
</tr>
<tr>
<td>Denmark</td>
<td>2.76</td>
<td>1.14</td>
</tr>
<tr>
<td>Estonia</td>
<td>3.41</td>
<td>1.40</td>
</tr>
<tr>
<td>Finland</td>
<td>2.98</td>
<td>1.22</td>
</tr>
<tr>
<td>France</td>
<td>3.18</td>
<td>1.30</td>
</tr>
<tr>
<td>Germany</td>
<td>3.01</td>
<td>1.24</td>
</tr>
<tr>
<td>Greece</td>
<td>3.25</td>
<td>1.34</td>
</tr>
<tr>
<td>Hungary</td>
<td>3.64</td>
<td>1.49</td>
</tr>
<tr>
<td>Ireland</td>
<td>3.00</td>
<td>1.23</td>
</tr>
<tr>
<td>Italy</td>
<td>3.29</td>
<td>1.36</td>
</tr>
<tr>
<td>Latvia</td>
<td>3.50</td>
<td>1.43</td>
</tr>
<tr>
<td>Lithuania</td>
<td>3.67</td>
<td>1.50</td>
</tr>
<tr>
<td>Luxembourg</td>
<td>3.64</td>
<td>1.50</td>
</tr>
<tr>
<td>Malta</td>
<td>3.64</td>
<td>1.50</td>
</tr>
<tr>
<td>Netherlands</td>
<td>3.14</td>
<td>1.29</td>
</tr>
<tr>
<td>Poland</td>
<td>3.51</td>
<td>1.43</td>
</tr>
<tr>
<td>Portugal</td>
<td>3.39</td>
<td>1.39</td>
</tr>
<tr>
<td>Slovakia</td>
<td>4.24</td>
<td>1.74</td>
</tr>
<tr>
<td>Slovenia</td>
<td>3.39</td>
<td>1.39</td>
</tr>
<tr>
<td>Spain</td>
<td>3.30</td>
<td>1.36</td>
</tr>
<tr>
<td>Sweden</td>
<td>2.98</td>
<td>1.22</td>
</tr>
<tr>
<td>United Kingdom</td>
<td>3.04</td>
<td>1.25</td>
</tr>
<tr>
<td>EU (25 Countries)</td>
<td>2.98</td>
<td>1.22</td>
</tr>
<tr>
<td>Switzerland</td>
<td>2.63</td>
<td>1.08</td>
</tr>
</tbody>
</table>

\(^1\) Value per tonne of freight carried and not for the maximum load of the vehicle or the weight of the vehicle.

0.4 Value of changes in accident risks

The recommendations given in the following, focus on a consistent set of monetary values for assessing accident risks and of factors for correcting underreporting for accident risks based on accident statistics. We assume that procedures for estimating accident risks for fatalities, severe and slight injuries have been established in the project planning process and are thus available for the appraisal.
We adopt a modified accident impact definition based on EUNET (Nellthorp et al. 1998)

- Fatality: death arising from the accident.
- Serious injury: casualties which require hospital treatment and have lasting injuries, but the victim does not die within the fatality recording period.
- Slight injury: casualties whose injuries do not require hospital treatment or, if they do, the effect of the injury quickly subsides.
- Damage-only accident: accident without casualties.

A 30 day period restriction for fatalities, as given in the original definition, is a pragmatic simplification for accident reporting, because it would be quite demanding to observe all severely injured persons for a longer time period, say e.g. 60 days. As there is evidence for considerable under-reporting due to the 30 day limit, we recommend correcting the available statistical data to include all fatalities due to accidents (see below).

It would be appropriate to distinguish at least between serious injuries entailing permanent invalidity and serious injuries where victims virtually recover entirely. However, often the necessary data are not available. Thus due to data limitations we recommend to use the EU-NET definition as default.

Underreporting of road accidents is a well recognized problem in official (road) accident statistics. Therefore, the official figures underestimate the true number of accidents. Based on a literature review, we conclude that underreporting of accidents is only relevant for road transport. We recommend to apply the correction factors for unreported accidents (= ratio all accidents / reported accidents) as given in Table 0.9. The correction factor given for fatalities of 1.02 should be applied in all countries alike, since here the problem is not underreporting, but that some victims die after expiry of the recording period of 30 days.

Table 0.9 Recommendation for European average correction factors for unreported road accidents.

<table>
<thead>
<tr>
<th></th>
<th>Fatality</th>
<th>Serious injury</th>
<th>Slight injury</th>
<th>Average injury</th>
<th>Damage only</th>
</tr>
</thead>
<tbody>
<tr>
<td>Average</td>
<td>1.02</td>
<td>1.50</td>
<td>3.00</td>
<td>2.25</td>
<td>6.00</td>
</tr>
<tr>
<td>Car</td>
<td>1.02</td>
<td>1.25</td>
<td>2.00</td>
<td>1.63</td>
<td>3.50</td>
</tr>
<tr>
<td>Motorbike/moped</td>
<td>1.02</td>
<td>1.55</td>
<td>3.20</td>
<td>2.38</td>
<td>6.50</td>
</tr>
<tr>
<td>Bicycle</td>
<td>1.02</td>
<td>2.75</td>
<td>8.00</td>
<td>5.38</td>
<td>18.50</td>
</tr>
<tr>
<td>Pedestrian</td>
<td>1.02</td>
<td>1.35</td>
<td>2.40</td>
<td>1.88</td>
<td>4.50</td>
</tr>
</tbody>
</table>

The valuation of an accident can be divided into direct economic costs, indirect economic costs and a value of safety per se. We recommend using values as follows:

a) Value of safety per se: WTP for safeguarding human life based on stated preference studies carried out in the country concerned.

b) Direct and indirect economic costs (mainly medical and rehabilitation cost, administrative cost of legal system, and production losses): cost values for the country under assessment.

c) Material damage from accidents: cost values for the average damage caused by accidents in the country under assessment.
If such values are not available for a) and b) the values provided in Table 0.10 may be used. The split into value of safety per se and economic costs is given in the main text. The values expressed in PPPs, show a much smaller range.

Since the uncertainties in estimating the value of safety per se are comparably large, we recommend carrying out a sensitivity analysis for this value. Based on European Commission (2005) we recommend using $\nu/3$ as lower boundary and $\nu*3$ as high boundary of the sensitivity analysis (with ν = value of safety per se).

Wherever possible, the values used in demand modelling and valuation of effects should be consistent. If the values used in demand modelling comply with the requirements above, these should be used for valuation. If this is not the case the values, given in Table 0.10 should be used for demand modelling.

Table 0.10 Estimated values for casualties avoided.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Austria</td>
<td>1,760,000</td>
<td>240,300</td>
<td>19,000</td>
<td>1,685,000</td>
<td>230,100</td>
<td>18,200</td>
</tr>
<tr>
<td>Belgium</td>
<td>1,639,000</td>
<td>249,000</td>
<td>16,000</td>
<td>1,603,000</td>
<td>243,200</td>
<td>15,700</td>
</tr>
<tr>
<td>Cyprus</td>
<td>704,000</td>
<td>92,900</td>
<td>6,800</td>
<td>798,000</td>
<td>105,500</td>
<td>7,700</td>
</tr>
<tr>
<td>Czech Republic</td>
<td>495,000</td>
<td>67,100</td>
<td>4,800</td>
<td>932,000</td>
<td>125,200</td>
<td>9,100</td>
</tr>
<tr>
<td>Denmark</td>
<td>2,200,000</td>
<td>272,300</td>
<td>21,300</td>
<td>1,672,000</td>
<td>206,900</td>
<td>16,200</td>
</tr>
<tr>
<td>Estonia</td>
<td>352,000</td>
<td>46,500</td>
<td>3,400</td>
<td>630,000</td>
<td>84,400</td>
<td>6,100</td>
</tr>
<tr>
<td>Finland</td>
<td>1,738,000</td>
<td>230,600</td>
<td>17,300</td>
<td>1,548,000</td>
<td>205,900</td>
<td>15,400</td>
</tr>
<tr>
<td>France</td>
<td>1,617,000</td>
<td>225,800</td>
<td>17,000</td>
<td>1,548,000</td>
<td>216,300</td>
<td>16,200</td>
</tr>
<tr>
<td>Germany</td>
<td>1,661,000</td>
<td>229,400</td>
<td>18,600</td>
<td>1,493,000</td>
<td>206,500</td>
<td>16,700</td>
</tr>
<tr>
<td>Greece</td>
<td>836,000</td>
<td>109,500</td>
<td>8,400</td>
<td>1,069,000</td>
<td>139,700</td>
<td>10,700</td>
</tr>
<tr>
<td>Hungary</td>
<td>440,000</td>
<td>59,000</td>
<td>4,300</td>
<td>808,000</td>
<td>108,400</td>
<td>7,900</td>
</tr>
<tr>
<td>Ireland</td>
<td>2,134,000</td>
<td>270,100</td>
<td>20,700</td>
<td>1,836,000</td>
<td>232,600</td>
<td>17,800</td>
</tr>
<tr>
<td>Italy</td>
<td>1,430,000</td>
<td>183,700</td>
<td>14,100</td>
<td>1,493,000</td>
<td>191,900</td>
<td>14,700</td>
</tr>
<tr>
<td>Latvia</td>
<td>275,000</td>
<td>36,700</td>
<td>2,700</td>
<td>534,000</td>
<td>72,300</td>
<td>5,200</td>
</tr>
<tr>
<td>Lithuania</td>
<td>275,000</td>
<td>38,000</td>
<td>2,700</td>
<td>575,000</td>
<td>78,500</td>
<td>5,700</td>
</tr>
<tr>
<td>Luxembourg</td>
<td>2,332,000</td>
<td>363,700</td>
<td>21,900</td>
<td>2,055,000</td>
<td>320,200</td>
<td>19,300</td>
</tr>
<tr>
<td>Malta</td>
<td>1,001,000</td>
<td>127,800</td>
<td>9,500</td>
<td>1,445,000</td>
<td>183,500</td>
<td>13,700</td>
</tr>
<tr>
<td>Netherlands</td>
<td>1,782,000</td>
<td>236,600</td>
<td>19,000</td>
<td>1,672,000</td>
<td>221,500</td>
<td>17,900</td>
</tr>
<tr>
<td>Norway</td>
<td>2,893,000</td>
<td>406,000</td>
<td>29,100</td>
<td>2,055,000</td>
<td>288,300</td>
<td>20,700</td>
</tr>
<tr>
<td>Poland</td>
<td>341,000</td>
<td>46,500</td>
<td>3,300</td>
<td>630,000</td>
<td>84,500</td>
<td>6,100</td>
</tr>
<tr>
<td>Portugal</td>
<td>803,000</td>
<td>107,400</td>
<td>7,400</td>
<td>1,055,000</td>
<td>141,000</td>
<td>9,700</td>
</tr>
<tr>
<td>Slovakia</td>
<td>308,000</td>
<td>42,100</td>
<td>3,000</td>
<td>699,000</td>
<td>96,400</td>
<td>6,900</td>
</tr>
<tr>
<td>Slovenia</td>
<td>759,000</td>
<td>99,000</td>
<td>7,300</td>
<td>1,028,000</td>
<td>133,500</td>
<td>9,800</td>
</tr>
<tr>
<td>Spain</td>
<td>1,122,000</td>
<td>138,900</td>
<td>10,500</td>
<td>1,302,000</td>
<td>161,800</td>
<td>12,200</td>
</tr>
<tr>
<td>Sweden</td>
<td>1,870,000</td>
<td>273,300</td>
<td>19,700</td>
<td>1,576,000</td>
<td>231,300</td>
<td>16,600</td>
</tr>
<tr>
<td>Switzerland</td>
<td>2,574,000</td>
<td>353,800</td>
<td>27,100</td>
<td>1,809,000</td>
<td>248,000</td>
<td>19,100</td>
</tr>
<tr>
<td>United Kingdom</td>
<td>1,815,000</td>
<td>235,100</td>
<td>18,600</td>
<td>1,617,000</td>
<td>208,900</td>
<td>16,600</td>
</tr>
</tbody>
</table>

Notes: Value of safety per se based on UNITE (see Nellthorp et al., 2001): fatality €1.50 million (market price 1998 – €1.25 million factor costs 2002); severe/slight injury 0.13/0.01 of fatality. Direct and indirect economic costs: fatality 0.10 of value of safety per se; severe and slight injury based on European Commission (1994).
We recommend increasing values for future years based on a default inter-temporal elasticity to GDP per capita growth of 1.0. If accident costs prove to contribute an important part of the benefits quantified in an assessment, we recommend sensitivity testing with an income elasticity of 0.7.

Please note that the assumption of linearly growing values clearly requires explicit and careful demand modelling over time. If this is not the case, the results are likely to overestimate benefits from a transport project.

The recommended calculation procedure is as follows:

Step 1: quantification of changes in the number of fatalities, serious injuries, slight injuries, and material damage due to a project using local or national risk functions.

Step 2: adjustment for underreporting of casualties with national (if available) or European factors.

Step 3: preparation of the cost factor table by increasing the cost factor according to the assumed country-specific GDP per capita growth for each year of the analysis.

Step 4: multiplication of casualties with cost factors.

Step 5: reporting of casualties and costs.

0.5 Environmental costs

Our general recommendation is – wherever possible – to value impacts, not environmental burden (for example value mortality risks caused by PM$_{10}$ emissions and not the emissions of PM$_{10}$) and to monetise impacts as far as possible using values based on the WTP concept. To increase transparency and allow for alternative valuations both costs and (key) impacts should be reported.

In the following sections we provide values that can be used if no country-specific state-of-the-art values are available for calculating environmental costs due to air pollution, noise and global warming.

0.5.1 Air pollution

We recommend using country-specific values taking into account local population density and regional climate. Cost factors measured in € per tonne of pollutant emitted in different environments (urban areas, outside built-up areas) are provided below. The list of pollutants should cover

- primary PM$_{2.5}$ for transport emissions (PM$_{10}$ for emissions from power plants),
- NO$_x$ as precursor of nitrate aerosols and ozone,
- SO$_2$ for direct effects and as precursor of sulphate aerosols, and
- NMVOC as precursor of ozone.
Project related emissions should be calculated using national emission factors; if such factors are not available, emission factors from international sources can be applied, taking into account national vehicle fleet compositions as far as possible.

Existing research identified damage to human health as the most important effect in terms of quantifiable costs. In particular the reduction of life expectancy in terms of Years of Life Lost (YOLL) contributes to health costs. Therefore, YOLL is a good indicator for physical impacts caused.

Table 0.11 presents the recommended cost factors in € per tonne of pollutant emitted by road and other ground level transport (e.g. diesel trains). Please note however, that the monetary values given do not only assess YOLLs, but include a number of other health impacts and in addition damage to crops and materials. Table 0.13 presents the impact factors. The corresponding values for high stack emissions from electricity production in power plants are given in the main text.

The cost factors are estimated average values based on the spatial distribution of emissions within a country. The impacts and costs may vary within one country, particularly in large ones. The variation in costs due to NOx, NMVOC and SO2 between countries is mainly caused by air chemistry (incl. ozone formation) and the population affected. For primary particulates no air chemistry is involved, therefore differences reflect the number of population affected, which is determined mainly by distance to the emission source and the prevailing wind direction.

The PPP adjusted values in Table 0.12 differ from the values in Table 0.11 only for costs due to primary particle emissions. NOx, NMVOC and SO2 have virtually no local effects as most of their impact is caused after chemical transformation to other substances (ammonium nitrates and sulphates, ozone); damages occur far from the emission source, mostly in other countries. For keeping modelling effort reasonable trans-boundary impacts are valued at European average values. Rounding masks differences between € and PPP results. In contrast, for primary particles local effects play an important role, therefore the PPP weighted cost factors differ from those expressed in real €.
Table 0.11 Cost factors for road transport emissions* per tonne of pollutant emitted in €\textsubscript{2002} (factor prices).

<table>
<thead>
<tr>
<th>Pollutant emitted</th>
<th>NO\textsubscript{x}</th>
<th>NMVOC</th>
<th>SO\textsubscript{2}</th>
<th>PM\textsubscript{1.5} (\text{primary PM}_{1.5})</th>
</tr>
</thead>
<tbody>
<tr>
<td>Effective pollutant</td>
<td>(O_3,) Nitrates, Crops</td>
<td>(O_3)</td>
<td>Sulphates, Acid deposition, Crops</td>
<td>urban, outside built-up areas</td>
</tr>
<tr>
<td>Local environment</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Austria</td>
<td>4,300</td>
<td>600</td>
<td>3,900</td>
<td>450,000, 73,000</td>
</tr>
<tr>
<td>Belgium</td>
<td>2,700</td>
<td>1,100</td>
<td>5,400</td>
<td>440,000, 95,000</td>
</tr>
<tr>
<td>Cyprus**</td>
<td>500</td>
<td>1,100</td>
<td>500</td>
<td>230,000, 20,000</td>
</tr>
<tr>
<td>Czech Republic</td>
<td>3,200</td>
<td>1,100</td>
<td>4,100</td>
<td>170,000, 61,000</td>
</tr>
<tr>
<td>Denmark</td>
<td>1,800</td>
<td>800</td>
<td>1,900</td>
<td>520,000, 54,000</td>
</tr>
<tr>
<td>Estonia</td>
<td>1,400</td>
<td>500</td>
<td>1,200</td>
<td>100,000, 23,000</td>
</tr>
<tr>
<td>Finland</td>
<td>900</td>
<td>200</td>
<td>600</td>
<td>400,000, 33,000</td>
</tr>
<tr>
<td>France</td>
<td>4,600</td>
<td>800</td>
<td>4,300</td>
<td>430,000, 83,000</td>
</tr>
<tr>
<td>Germany</td>
<td>3,100</td>
<td>1,100</td>
<td>4,500</td>
<td>430,000, 80,000</td>
</tr>
<tr>
<td>Greece</td>
<td>2,200</td>
<td>600</td>
<td>1,400</td>
<td>210,000, 34,000</td>
</tr>
<tr>
<td>Hungary</td>
<td>5,000</td>
<td>800</td>
<td>4,100</td>
<td>150,000, 54,000</td>
</tr>
<tr>
<td>Ireland</td>
<td>2,000</td>
<td>400</td>
<td>1,600</td>
<td>510,000, 50,000</td>
</tr>
<tr>
<td>Italy</td>
<td>3,200</td>
<td>1,600</td>
<td>3,500</td>
<td>370,000, 70,000</td>
</tr>
<tr>
<td>Latvia</td>
<td>1,800</td>
<td>500</td>
<td>1,400</td>
<td>80,000, 22,000</td>
</tr>
<tr>
<td>Lithuania</td>
<td>2,600</td>
<td>500</td>
<td>1,800</td>
<td>90,000, 28,000</td>
</tr>
<tr>
<td>Luxemburg</td>
<td>4,800</td>
<td>1,400</td>
<td>4,900</td>
<td>590,000, 96,000</td>
</tr>
<tr>
<td>Malta ((O_3) estimated)</td>
<td>500</td>
<td>1,100</td>
<td>500</td>
<td>170,000, 16,000</td>
</tr>
<tr>
<td>Netherlands</td>
<td>2,600</td>
<td>1,000</td>
<td>5,000</td>
<td>470,000, 88,000</td>
</tr>
<tr>
<td>Poland</td>
<td>3,000</td>
<td>800</td>
<td>3,500</td>
<td>130,000, 53,000</td>
</tr>
<tr>
<td>Portugal</td>
<td>2,800</td>
<td>1,000</td>
<td>1,900</td>
<td>210,000, 37,000</td>
</tr>
<tr>
<td>Slovakia</td>
<td>4,600</td>
<td>1,100</td>
<td>3,800</td>
<td>110,000, 49,000</td>
</tr>
<tr>
<td>Slovenia</td>
<td>4,400</td>
<td>700</td>
<td>4,000</td>
<td>220,000, 55,000</td>
</tr>
<tr>
<td>Spain</td>
<td>2,700</td>
<td>500</td>
<td>2,100</td>
<td>280,000, 41,000</td>
</tr>
<tr>
<td>Sweden</td>
<td>1,300</td>
<td>300</td>
<td>1,000</td>
<td>440,000, 40,000</td>
</tr>
<tr>
<td>Switzerland</td>
<td>4,500</td>
<td>600</td>
<td>3,900</td>
<td>640,000, 86,000</td>
</tr>
<tr>
<td>United Kingdom</td>
<td>1,600</td>
<td>700</td>
<td>2,900</td>
<td>450,000, 67,000</td>
</tr>
</tbody>
</table>

Notes: Cost categories included are: human health, crop losses, material damages.
* Values are applicable to all emissions at ground level (e.g. diesel locomotives).
** Estimated values as Cyprus outside of modelling domain.
Table 0.12 Cost factors for road transport emissions* per tonne of pollutant emitted in €2002 PPP (factor prices).

<table>
<thead>
<tr>
<th>Pollutant emitted</th>
<th>Effective pollutant O₃, Nitrates, Crops</th>
<th>Local environment</th>
<th>PM${1.5}$ primary PM${1.5}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pollutant emitted</td>
<td>NOₓ</td>
<td>NMVOC</td>
<td>SO₂</td>
</tr>
<tr>
<td>Austria</td>
<td>4,300</td>
<td>600</td>
<td>3,900</td>
</tr>
<tr>
<td>Belgium</td>
<td>2,700</td>
<td>1,100</td>
<td>5,400</td>
</tr>
<tr>
<td>Cyprus**</td>
<td>500</td>
<td>1,100</td>
<td>500</td>
</tr>
<tr>
<td>Czech Republic</td>
<td>3,200</td>
<td>1,100</td>
<td>4,100</td>
</tr>
<tr>
<td>Denmark</td>
<td>1,800</td>
<td>800</td>
<td>1,900</td>
</tr>
<tr>
<td>Estonia</td>
<td>1,400</td>
<td>500</td>
<td>1,200</td>
</tr>
<tr>
<td>Finland</td>
<td>900</td>
<td>200</td>
<td>600</td>
</tr>
<tr>
<td>France</td>
<td>4,600</td>
<td>800</td>
<td>4,300</td>
</tr>
<tr>
<td>Germany</td>
<td>3,100</td>
<td>1,100</td>
<td>4,500</td>
</tr>
<tr>
<td>Greece</td>
<td>2,200</td>
<td>600</td>
<td>1,400</td>
</tr>
<tr>
<td>Hungary</td>
<td>5,000</td>
<td>800</td>
<td>4,100</td>
</tr>
<tr>
<td>Ireland</td>
<td>2,000</td>
<td>400</td>
<td>1,600</td>
</tr>
<tr>
<td>Italy</td>
<td>3,200</td>
<td>1,600</td>
<td>3,500</td>
</tr>
<tr>
<td>Latvia</td>
<td>1,800</td>
<td>500</td>
<td>1,400</td>
</tr>
<tr>
<td>Lithuania</td>
<td>2,600</td>
<td>500</td>
<td>1,800</td>
</tr>
<tr>
<td>Luxemburg</td>
<td>4,800</td>
<td>1,400</td>
<td>4,900</td>
</tr>
<tr>
<td>Malta (O₃ estimated)</td>
<td>500</td>
<td>1,100</td>
<td>500</td>
</tr>
<tr>
<td>Netherlands</td>
<td>2,600</td>
<td>1,000</td>
<td>5,000</td>
</tr>
<tr>
<td>Poland</td>
<td>3,000</td>
<td>800</td>
<td>3,500</td>
</tr>
<tr>
<td>Portugal</td>
<td>2,800</td>
<td>1,000</td>
<td>1,900</td>
</tr>
<tr>
<td>Slovakia</td>
<td>4,600</td>
<td>1,100</td>
<td>3,800</td>
</tr>
<tr>
<td>Slovenia</td>
<td>4,400</td>
<td>700</td>
<td>4,000</td>
</tr>
<tr>
<td>Spain</td>
<td>2,700</td>
<td>500</td>
<td>2,100</td>
</tr>
<tr>
<td>Sweden</td>
<td>1,300</td>
<td>300</td>
<td>1,000</td>
</tr>
<tr>
<td>Switzerland</td>
<td>4,500</td>
<td>600</td>
<td>3,900</td>
</tr>
<tr>
<td>United Kingdom</td>
<td>1,600</td>
<td>700</td>
<td>2,900</td>
</tr>
</tbody>
</table>

Notes: Cost categories included are: human health, crop losses, material damages.
* Values are applicable to all emissions at ground level (e.g. diesel locomotives).
** Estimated values as Cyprus outside of modelling domain.
Table 0.13 Impact factors for road transport emissions* (lost life expectancy in years of life lost per 1000 tonnes of pollutant emitted).

<table>
<thead>
<tr>
<th>Pollutant emitted</th>
<th>Effective pollutant</th>
<th>NOx</th>
<th>NMVOC</th>
<th>SO2</th>
<th>PM${2.5}$ primary PM${2.5}$</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Local environment</td>
<td>O3, Nitrates</td>
<td>O3</td>
<td>Sulphates</td>
<td>urban</td>
</tr>
<tr>
<td>Austria</td>
<td></td>
<td>61</td>
<td>0.6</td>
<td>58</td>
<td>5,800</td>
</tr>
<tr>
<td>Belgium</td>
<td></td>
<td>57</td>
<td>1.3</td>
<td>81</td>
<td>6,200</td>
</tr>
<tr>
<td>Cyprus**</td>
<td></td>
<td>8</td>
<td>0.5</td>
<td>8</td>
<td>5,100</td>
</tr>
<tr>
<td>Czech Republic</td>
<td></td>
<td>50</td>
<td>1.0</td>
<td>58</td>
<td>5,900</td>
</tr>
<tr>
<td>Denmark</td>
<td></td>
<td>29</td>
<td>0.9</td>
<td>28</td>
<td>5,400</td>
</tr>
<tr>
<td>Estonia</td>
<td></td>
<td>18</td>
<td>1.5</td>
<td>17</td>
<td>5,300</td>
</tr>
<tr>
<td>Finland</td>
<td></td>
<td>11</td>
<td>0.2</td>
<td>9</td>
<td>5,100</td>
</tr>
<tr>
<td>France</td>
<td></td>
<td>65</td>
<td>0.8</td>
<td>65</td>
<td>6,000</td>
</tr>
<tr>
<td>Germany</td>
<td></td>
<td>53</td>
<td>1.2</td>
<td>65</td>
<td>5,900</td>
</tr>
<tr>
<td>Greece</td>
<td></td>
<td>20</td>
<td>0.2</td>
<td>20</td>
<td>5,400</td>
</tr>
<tr>
<td>Hungary</td>
<td></td>
<td>63</td>
<td>0.6</td>
<td>58</td>
<td>5,800</td>
</tr>
<tr>
<td>Ireland</td>
<td></td>
<td>30</td>
<td>0.7</td>
<td>25</td>
<td>5,300</td>
</tr>
<tr>
<td>Italy</td>
<td></td>
<td>50</td>
<td>0.8</td>
<td>54</td>
<td>5,800</td>
</tr>
<tr>
<td>Latvia</td>
<td></td>
<td>22</td>
<td>0.9</td>
<td>21</td>
<td>5,300</td>
</tr>
<tr>
<td>Lithuania</td>
<td></td>
<td>29</td>
<td>0.9</td>
<td>26</td>
<td>5,400</td>
</tr>
<tr>
<td>Luxembourg</td>
<td></td>
<td>70</td>
<td>1.5</td>
<td>73</td>
<td>6,000</td>
</tr>
<tr>
<td>Malta (O$_3$ estimated)</td>
<td></td>
<td>8</td>
<td>0.5</td>
<td>8</td>
<td>5,100</td>
</tr>
<tr>
<td>Netherlands</td>
<td></td>
<td>56</td>
<td>1.1</td>
<td>74</td>
<td>6,000</td>
</tr>
<tr>
<td>Poland</td>
<td></td>
<td>46</td>
<td>0.8</td>
<td>49</td>
<td>5,800</td>
</tr>
<tr>
<td>Portugal</td>
<td></td>
<td>31</td>
<td>0.5</td>
<td>30</td>
<td>5,400</td>
</tr>
<tr>
<td>Slovakia</td>
<td></td>
<td>57</td>
<td>1.0</td>
<td>55</td>
<td>5,700</td>
</tr>
<tr>
<td>Slovenia</td>
<td></td>
<td>63</td>
<td>0.5</td>
<td>59</td>
<td>5,700</td>
</tr>
<tr>
<td>Spain</td>
<td></td>
<td>34</td>
<td>0.4</td>
<td>33</td>
<td>5,400</td>
</tr>
<tr>
<td>Sweden</td>
<td></td>
<td>15</td>
<td>0.4</td>
<td>15</td>
<td>5,200</td>
</tr>
<tr>
<td>Switzerland</td>
<td></td>
<td>68</td>
<td>0.7</td>
<td>59</td>
<td>5,800</td>
</tr>
<tr>
<td>United Kingdom</td>
<td></td>
<td>35</td>
<td>1.0</td>
<td>44</td>
<td>5,700</td>
</tr>
</tbody>
</table>

Notes: * values are applicable to all emissions at ground level (e.g. diesel locomotives). ** Estimated values as Cyprus outside of modelling domain.

We recommend increasing values for future years based on a default inter-temporal elasticity to GDP per capita growth of 1.0. If air pollution costs prove to contribute an important part of the benefits quantified in an assessment we recommend sensitivity testing with an income elasticity of 0.7.

Please note that the assumption of linearly growing values over time clearly requires explicit and careful emission modelling over time. If this is not the case, the results are likely to over-estimate benefits from a transport project, as vehicle emissions can be assumed to decrease considerably in the future. Information on the future development of emission factors can be found for instance at http://www.tremove.org/download/index.htm.
The recommended calculation procedure is as follows:

Step 1: quantification of change in pollutant emissions (NO\textsubscript{x}, SO\textsubscript{2}, NMVOC, PM\textsubscript{2.5}/PM\textsubscript{10}) due to a project, measured in tonnes, using state-of-the-art national or European emission factors.

Step 2: classification of emissions according to height of emission sources (ground-level vs. high stack) and local environment (urban – outside built-up areas). Ground level emissions are released from internal combustion engines, high stack emissions are released during electricity production in power plants.

Step 3: preparation of the cost factor table by increasing the cost factor according to the assumed country-specific GDP per capita growth for each year of the analysis.

Step 4: calculation of impacts (multiplication of pollutant emissions by impact factor) and costs (multiplication of pollutant emissions by cost factor).

Step 5: reporting of impacts and costs.

0.5.2 Noise

For noise costs it is suggested to use country-specific values per person exposed to a certain noise level (see Table 0.14). The suggested impact indicator, which should be reported alongside with the monetary results, is the number of persons highly annoyed – see Table 0.15.

We recommend increasing monetary values for future years based on a default inter-temporal elasticity to GDP per capita growth of 1.0. If noise costs prove to contribute an important part of the benefits quantified in an assessment we recommend sensitivity testing with an income elasticity of 0.7.

Please note that the assumption of linearly growing values over time clearly requires explicit and careful emission modelling over time. If this is not the case, the results are likely to overestimate benefits from a transport project, as vehicle emissions are likely to decrease in the future.

The recommended calculation procedure is as follows:

Step 1: quantification of the number of persons exposed to certain noise levels (should be available from noise calculations) for the Do-Minimum case and the Do-Something case.

Step 2: preparation of the cost factor table by increasing the cost factor according to the assumed country-specific GDP per capita growth for each year of the analysis.

Step 3: calculation of impacts (multiply percentage of highly annoyed persons by number of persons exposed) and costs (multiply cost per person by number of persons exposed) for both cases.

Step 4: subtraction of total costs for the Do-Something case from Do-Minimum case

Step 5: reporting of costs and impacts (change in number of people highly annoyed).
Table 0.14 Cost factors for noise exposure for Finland (€2002, factor costs, per year per person exposed; to derive €2002 PPP the values below are divided by the Finish PPP adjustment factor of 1.12). For values for all countries see main text.

<table>
<thead>
<tr>
<th>Finland</th>
<th>Central values</th>
<th>New approach</th>
<th>High values</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>L_{den} (dB(A))</td>
<td>Road</td>
<td>Rail</td>
</tr>
<tr>
<td>≥43</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>≥44</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>≥45</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>≥46</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>≥47</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>≥48</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>≥49</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>≥50</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>0</td>
<td>16</td>
</tr>
<tr>
<td>≥51</td>
<td>20</td>
<td>0</td>
<td>32</td>
</tr>
<tr>
<td>≥52</td>
<td>31</td>
<td>0</td>
<td>47</td>
</tr>
<tr>
<td>≥53</td>
<td>41</td>
<td>0</td>
<td>63</td>
</tr>
<tr>
<td>≥54</td>
<td>51</td>
<td>0</td>
<td>79</td>
</tr>
<tr>
<td>≥55</td>
<td>61</td>
<td>10</td>
<td>95</td>
</tr>
<tr>
<td>≥56</td>
<td>71</td>
<td>20</td>
<td>110</td>
</tr>
<tr>
<td>≥57</td>
<td>81</td>
<td>31</td>
<td>126</td>
</tr>
<tr>
<td>≥58</td>
<td>92</td>
<td>41</td>
<td>142</td>
</tr>
<tr>
<td>≥59</td>
<td>102</td>
<td>51</td>
<td>158</td>
</tr>
<tr>
<td>≥60</td>
<td>112</td>
<td>61</td>
<td>174</td>
</tr>
<tr>
<td>≥61</td>
<td>122</td>
<td>71</td>
<td>189</td>
</tr>
<tr>
<td>≥62</td>
<td>132</td>
<td>81</td>
<td>205</td>
</tr>
<tr>
<td>≥63</td>
<td>143</td>
<td>92</td>
<td>221</td>
</tr>
<tr>
<td>≥64</td>
<td>153</td>
<td>102</td>
<td>237</td>
</tr>
<tr>
<td>≥65</td>
<td>163</td>
<td>112</td>
<td>252</td>
</tr>
<tr>
<td>≥66</td>
<td>173</td>
<td>122</td>
<td>268</td>
</tr>
<tr>
<td>≥67</td>
<td>183</td>
<td>132</td>
<td>284</td>
</tr>
<tr>
<td>≥68</td>
<td>193</td>
<td>143</td>
<td>300</td>
</tr>
<tr>
<td>≥69</td>
<td>204</td>
<td>153</td>
<td>316</td>
</tr>
<tr>
<td>≥70</td>
<td>217</td>
<td>163</td>
<td>332</td>
</tr>
<tr>
<td>≥71</td>
<td>227</td>
<td>173</td>
<td>348</td>
</tr>
<tr>
<td>≥72</td>
<td>237</td>
<td>183</td>
<td>364</td>
</tr>
<tr>
<td>≥73</td>
<td>247</td>
<td>193</td>
<td>380</td>
</tr>
<tr>
<td>≥74</td>
<td>257</td>
<td>204</td>
<td>396</td>
</tr>
<tr>
<td>≥75</td>
<td>267</td>
<td>214</td>
<td>412</td>
</tr>
<tr>
<td>≥76</td>
<td>277</td>
<td>224</td>
<td>428</td>
</tr>
<tr>
<td>≥77</td>
<td>287</td>
<td>234</td>
<td>444</td>
</tr>
<tr>
<td>≥78</td>
<td>297</td>
<td>244</td>
<td>460</td>
</tr>
<tr>
<td>≥79</td>
<td>307</td>
<td>254</td>
<td>476</td>
</tr>
<tr>
<td>≥80</td>
<td>317</td>
<td>264</td>
<td>492</td>
</tr>
<tr>
<td>≥81</td>
<td>327</td>
<td>274</td>
<td>508</td>
</tr>
</tbody>
</table>

Notes: All values include health effects and annoyance. Central values comprise the WTP for reducing annoyance based on stated preference studies (see Working group on health and socio-economic aspects, 2003). For “New approach” annoyance was based on dose-response functions; monetary values were taken from the HEATCO surveys (see Navrud et al. 2006). High values include annoyance valuation based on hedonic pricing as applied in UNITE (see Bickel et al. 2003).
Table 0.15 Impact indicator for noise exposure: percentage of adult persons highly annoyed per person (all ages) exposed – based on functions given in European Commission (2002), assuming 80% of population are adults.

<table>
<thead>
<tr>
<th>L_{den}</th>
<th>Road</th>
<th>Rail</th>
<th>Aircraft</th>
</tr>
</thead>
<tbody>
<tr>
<td>dB(A)</td>
<td>%</td>
<td>%</td>
<td>%</td>
</tr>
<tr>
<td>≥43</td>
<td>0.4</td>
<td>0.1</td>
<td>0.3</td>
</tr>
<tr>
<td>≥44</td>
<td>0.8</td>
<td>0.3</td>
<td>0.6</td>
</tr>
<tr>
<td>≥45</td>
<td>1.1</td>
<td>0.4</td>
<td>1.0</td>
</tr>
<tr>
<td>≥46</td>
<td>1.5</td>
<td>0.5</td>
<td>1.4</td>
</tr>
<tr>
<td>≥47</td>
<td>1.9</td>
<td>0.6</td>
<td>2.0</td>
</tr>
<tr>
<td>≥48</td>
<td>2.2</td>
<td>0.7</td>
<td>2.5</td>
</tr>
<tr>
<td>≥49</td>
<td>2.6</td>
<td>0.8</td>
<td>3.2</td>
</tr>
<tr>
<td>≥50</td>
<td>2.9</td>
<td>1.0</td>
<td>3.9</td>
</tr>
<tr>
<td>≥51</td>
<td>3.3</td>
<td>1.1</td>
<td>4.6</td>
</tr>
<tr>
<td>≥52</td>
<td>3.7</td>
<td>1.3</td>
<td>5.4</td>
</tr>
<tr>
<td>≥53</td>
<td>4.2</td>
<td>1.5</td>
<td>6.3</td>
</tr>
<tr>
<td>≥54</td>
<td>4.6</td>
<td>1.7</td>
<td>7.2</td>
</tr>
<tr>
<td>≥55</td>
<td>5.1</td>
<td>2.0</td>
<td>8.2</td>
</tr>
<tr>
<td>≥56</td>
<td>5.6</td>
<td>2.3</td>
<td>9.3</td>
</tr>
<tr>
<td>≥57</td>
<td>6.2</td>
<td>2.6</td>
<td>10.4</td>
</tr>
<tr>
<td>≥58</td>
<td>6.8</td>
<td>2.9</td>
<td>11.5</td>
</tr>
<tr>
<td>≥59</td>
<td>7.5</td>
<td>3.3</td>
<td>12.7</td>
</tr>
<tr>
<td>≥60</td>
<td>8.3</td>
<td>3.8</td>
<td>14.0</td>
</tr>
<tr>
<td>≥61</td>
<td>9.0</td>
<td>4.3</td>
<td>15.3</td>
</tr>
<tr>
<td>≥62</td>
<td>9.9</td>
<td>4.8</td>
<td>16.7</td>
</tr>
<tr>
<td>≥63</td>
<td>10.8</td>
<td>5.4</td>
<td>18.1</td>
</tr>
<tr>
<td>≥64</td>
<td>11.9</td>
<td>6.1</td>
<td>19.6</td>
</tr>
<tr>
<td>≥65</td>
<td>12.9</td>
<td>6.8</td>
<td>21.2</td>
</tr>
<tr>
<td>≥66</td>
<td>14.1</td>
<td>7.6</td>
<td>22.7</td>
</tr>
<tr>
<td>≥67</td>
<td>15.4</td>
<td>8.5</td>
<td>24.4</td>
</tr>
<tr>
<td>≥68</td>
<td>16.8</td>
<td>9.5</td>
<td>26.1</td>
</tr>
<tr>
<td>≥69</td>
<td>18.2</td>
<td>10.5</td>
<td>27.8</td>
</tr>
<tr>
<td>≥70</td>
<td>19.8</td>
<td>11.6</td>
<td>29.6</td>
</tr>
<tr>
<td>≥71</td>
<td>21.5</td>
<td>12.8</td>
<td>31.5</td>
</tr>
<tr>
<td>≥72</td>
<td>23.3</td>
<td>14.1</td>
<td>33.4</td>
</tr>
<tr>
<td>≥73</td>
<td>25.2</td>
<td>15.4</td>
<td>35.3</td>
</tr>
<tr>
<td>≥74</td>
<td>27.2</td>
<td>16.9</td>
<td>37.3</td>
</tr>
<tr>
<td>≥75</td>
<td>29.4</td>
<td>18.4</td>
<td>39.4</td>
</tr>
<tr>
<td>≥76</td>
<td>31.7</td>
<td>20.1</td>
<td>41.5</td>
</tr>
<tr>
<td>≥77</td>
<td>34.1</td>
<td>21.9</td>
<td>43.6</td>
</tr>
<tr>
<td>≥78</td>
<td>36.7</td>
<td>23.8</td>
<td>45.8</td>
</tr>
<tr>
<td>≥79</td>
<td>39.4</td>
<td>25.8</td>
<td>48.0</td>
</tr>
<tr>
<td>≥80</td>
<td>42.3</td>
<td>27.9</td>
<td>50.3</td>
</tr>
<tr>
<td>≥81</td>
<td>45.3</td>
<td>30.1</td>
<td>52.6</td>
</tr>
</tbody>
</table>
0.5.3 Global warming

The method of calculating costs due to the emission of greenhouse gases (usually expressed as CO₂ equivalents) basically consists of multiplying the amount of CO₂ equivalents emitted with a cost factor. Due to the global scale of the damage caused, there is no difference how and where in Europe the emissions of greenhouse gases take place. For this reason, we recommend to apply the same values in all countries. However the factor proposed is dependent on when (in which year) the emission takes place.

The CO₂ equivalent of a greenhouse gas is derived by multiplying the amount of the gas by the associated Global Warming Potential (GWP). The GWP for methane is 23, for nitrous oxide 296, and for CO₂ it is 1.

In high altitudes other emissions than CO₂ from aircrafts have a considerable climatic effect. The most important species are water vapour, sulphate and soot aerosols and nitrogen oxides. In 1999 the Intergovernmental Panel on Climate Change (IPCC) estimated that aviation’s total impact is about 2 to 4 times higher than the effect of its past CO₂ emissions alone. Recent EU research results (see European Commission, 2005b, Annex 2) indicate that this ratio may be somewhat smaller (around a factor 2). Accordingly we recommend multiplying high altitude CO₂ emissions by a factor of 2 to consider the warming effect of other species than CO₂.

Recent work has confirmed the assumption that future emissions years will have stronger total impacts than present emissions (see e.g. Watkiss et al.; 2005a). Consequently for transport project appraisals, we need value estimates that include future increases. In a recent report for the Social Cost of Carbon Review on behalf of UK’s Defra, Watkiss et al. (2005b) derive shadow price values, taking into account the expected future development of damage costs and abatement costs. This study is the most current and comprehensive exercise providing consistent values for CO₂ emissions for application in project appraisal. Whereas the damage cost estimates do not rely on specific assumptions for the UK, the abatement cost estimates are based on UK government’s long-term goal of meeting a 60% CO₂ reduction by 2050 (which is broadly consistent with the EU’s 2°C target). On one hand the costs for reaching a domestic reduction of 60% are higher than implementing a more flexible reduction scheme. On the other hand, the abatement costs only influence the cost curve for later years (starting around 2030) when uncertainties are higher. In addition, the damage cost estimates do not include some important risks. We recommend using the guidance value given in Table 0.16 as central estimate, with the lower and upper estimate for sensitivity analysis.

We recommend no additional increasing of the values in Table 0.16 with GDP growth, as we assume that the above mentioned aim (limitation of the temperature increase to 2 K) will not be changed with growing GDP.

Please note that the assumption of growing values over time clearly requires explicit and careful emission modelling over time. If this is not the case, the results are likely to overestimate benefits from a transport project, as vehicle emissions can be assumed to decrease considerably in the future. Information on the future development of emission factors can be found for instance at http://www.tremove.org/download/index.htm.
Table 0.16 Shadow prices based on Watkiss et al. (2005b), converted from £2000/t C to €2002 (factor prices) per tonne of CO₂ equivalent emitted – no PPP adjustment necessary as values are not country specific.

<table>
<thead>
<tr>
<th>Year of emission</th>
<th>Central guidance</th>
<th>For sensitivity analysis</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Lower central estimate</td>
<td>Upper central estimate</td>
</tr>
<tr>
<td>2000 – 2009</td>
<td>22</td>
<td>14</td>
</tr>
<tr>
<td>2010 – 2019</td>
<td>26</td>
<td>16</td>
</tr>
<tr>
<td>2020 – 2029</td>
<td>32</td>
<td>20</td>
</tr>
<tr>
<td>2030 – 2039</td>
<td>40</td>
<td>26</td>
</tr>
<tr>
<td>2040 – 2049</td>
<td>55</td>
<td>36</td>
</tr>
<tr>
<td>2050</td>
<td>83</td>
<td>51</td>
</tr>
</tbody>
</table>

Notes: Values are for year of emission and were derived combining damage cost and marginal abatement cost estimates. The damage cost estimates are based on declining discount rates and include equity weighting. Some major climatic system events as well as socially contingent effects are excluded. For details see Watkiss et al. (2005b)

The recommended calculation procedure is as follows:

Step 1: quantification of change in greenhouse gas emissions (CO₂, CH₄, N₂O; others if data available) due to a project measured in tonnes.

Step 2: classification of emissions according to height of emission sources (ground-level – high altitude aircraft). Calculation of CO₂ equivalents of ground level emissions; multiplication of high altitude aircraft CO₂ emissions with a factor of 2 (to consider warming effects of other species).

Step 3: multiplication of CO₂ equivalents with cost factor for year of emission.

Step 4: reporting of emissions and costs.

0.5.4 Other effects

Air pollution, global warming and noise represent the most important and relevant cost categories that can currently be assessed within a CBA. Environmental impacts such as vibration, severance, visual intrusion, loss of important sites, impairment of landscape, as well as soil and water pollution are difficult to include based on general values, because the impacts are very site specific (e.g. impairment of landscape). Usually such aspects are covered by the requirements for Environmental Impact Assessment and by obligations to meet certain target values. However, even if such standards are met, the remaining burdens lead to external costs, which should be considered. Where monetisation is not (yet) possible, these effects should be reported and considered beside the CBA. However, it is beyond the scope of HEATCO to suggest concrete values or detailed methodologies in these areas.

0.6 Costs and indirect costs of infrastructure investment

This section summarises the recommendations on how to treat the following five elements in a cost-benefit analysis framework;
- Capital costs of the infrastructure project
- Residual value
- Optimism-bias
- Costs of maintenance, operation and administration
- Changes in infrastructure costs on existing network

0.6.1 Capital costs of the infrastructure investment

It is recommended to use the following definition of capital costs of the infrastructure investment:

- Construction costs, including materials, labour, energy, preparation, professional fees and contingencies
- Planning costs, including design costs, planning authority resources and other planning costs
- Land and property costs, including the value of the land needed for the scheme (and any associated properties), compensation payment necessary under national laws and the related transactions and legal costs
- Disruption costs, e.g. the disruption to existing users to be estimated using the same values of time as are used for travel time savings arising from the scheme.

Furthermore the cost assessment should be based on the following two general principles;

- Costs should be attributed to the project year in which the resources become unavailable to alternative uses.
- It is necessary to distinguish between costs incurred before and after the decision whether to go ahead with the project or not; and retrievable and non-retrievable costs.

As the cost-benefit analysis only concerns costs that will be incurred due to the decision to go ahead with the project, non-retrievable costs incurred prior to the decision should not be included in the cost-benefit analysis.

The implications of these general principles are discussed in section 7.3 for each of the elements of capital costs together with element-specific issues.

0.6.2 Residual value

The residual value is an item in the appraisal which captures the net benefits beyond the formal evaluation period. In the cost-benefit analysis the capital costs of the infrastructure is reduced by the net present value of the residual value of the infrastructure.

We recommend a pragmatic approach for estimating the residual value, which includes:

- Determination of the fixed lifetime of the infrastructure - or its sub-components
- Determination of a depreciation profile
The minimum approach is to use a linear depreciation profile. More advanced approaches are however also possible.

A range of recommended lifetimes is provided in Table 0.17 for road and rail projects. For other modes the recommended lifetimes can be used as inspiration. If the appraiser uses lifetimes outside the ranges presented in Table 0.17, it must be explicitly stated why such an approach is chosen.

<table>
<thead>
<tr>
<th>Mode</th>
<th>Group of components</th>
<th>Min</th>
<th>Main</th>
<th>Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>Road</td>
<td>Base course</td>
<td>30</td>
<td>45</td>
<td>60</td>
</tr>
<tr>
<td></td>
<td>Wearing course</td>
<td>10</td>
<td>20</td>
<td>30</td>
</tr>
<tr>
<td></td>
<td>Environmental</td>
<td>10</td>
<td>20</td>
<td>30</td>
</tr>
<tr>
<td></td>
<td>installations</td>
<td>50</td>
<td>75</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td>Drainage</td>
<td>50</td>
<td>75</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td>Retaining walls</td>
<td>50</td>
<td>75</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td>Bridges</td>
<td>50</td>
<td>75</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td>Tunnels</td>
<td>50</td>
<td>75</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td>Land</td>
<td>Infinite</td>
<td>Infinite</td>
<td>Infinite</td>
</tr>
<tr>
<td>Rail</td>
<td>Substructures</td>
<td>40</td>
<td>60</td>
<td>80</td>
</tr>
<tr>
<td></td>
<td>Tracks</td>
<td>20</td>
<td>30</td>
<td>40</td>
</tr>
<tr>
<td></td>
<td>Tech. Equip.,</td>
<td>10</td>
<td>20</td>
<td>30</td>
</tr>
<tr>
<td></td>
<td>Power supply</td>
<td>20</td>
<td>30</td>
<td>40</td>
</tr>
<tr>
<td></td>
<td>Environmental</td>
<td>10</td>
<td>30</td>
<td>50</td>
</tr>
<tr>
<td></td>
<td>installations</td>
<td>50</td>
<td>75</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td>Bridges</td>
<td>50</td>
<td>75</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td>Tunnels</td>
<td>50</td>
<td>75</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td>Land</td>
<td>Infinite</td>
<td>Infinite</td>
<td>Infinite</td>
</tr>
</tbody>
</table>

0.6.3 Optimism-bias

Optimism-bias refers to the systematic tendency for project appraisers to underestimate construction costs. It is recommended that a side-analysis is conducted where optimism-uplifts are applied to the estimated construction costs (including contingencies). Table 0.18 shows the suggested optimism-bias uplifts\(^1\). In case a project includes elements of different categories of project types, the relative size of each sub-project should be identified and the relevant uplift applied before aggregation to establish the total budget.

If the cost-benefit analysis still shows that the project is feasible, the project appraisal process can continue. If the project - which were considered feasible before the uplifts were applied - is 'not feasible' when the uplifts are applied, the group of planners must benchmark the cost estimates applied in the study to the realised costs of similar projects. If it can be documented that the original cost estimates are in line with the realised costs of similar projects, the pro-

\(^1\) See Table 7.5 for more details.
ject appraisal process can continue. If not, the planners must either explicitly justify why the cost estimates are lower and/or revise the construction cost estimates.

Table 0.18 Applicable capital expenditure uplift (average cost escalation)

<table>
<thead>
<tr>
<th>Category</th>
<th>Uplift</th>
</tr>
</thead>
<tbody>
<tr>
<td>Road</td>
<td>22%</td>
</tr>
<tr>
<td>Rail</td>
<td>34%</td>
</tr>
<tr>
<td>Fixed links</td>
<td>43%</td>
</tr>
<tr>
<td>Building projects</td>
<td>25%</td>
</tr>
<tr>
<td>IT projects</td>
<td>100%</td>
</tr>
</tbody>
</table>

0.6.4 "Costs of maintenance, operation and administration" and "Changes in infrastructure costs on existing network"

Costs of maintenance, operation and administration are costs accrued during the operating life of the transport infrastructure by the infrastructure owner for the parts of the network which are changed by the project. In line with this, the existing network is defined as these parts of the network that are not changed by the project.

It is very complex task to give recommendations on how to include costs of maintenance, operation and administration and changes in infrastructure costs on existing network, as the countries have different standards of infrastructure, composition of traffic, maintenance practice etc. This means not only that it is impossible to generalise/transfer cost estimates, but also that the possible approach to estimating costs differs between countries. This means that the recommended approach, which is presented below, should only be perceived as a "way of thinking" rather than a recipe for estimating costs. In practice, the approach taken must be modified to accommodate for example data availability.

The first best option is to use national default values if they are available. It has to be carefully considered if the national standard figures are applicable to the infrastructure under consideration.

The second best option is to use a pragmatic approach based on aggregate cost data which is available in most countries. The approach is outlined here for road and rail, but is also applicable to other modes.

The calculation procedure follows:

Step 1: Distinction between fixed and variable costs
Step 2: Allocation of variable costs to cost drivers

The distinction between (short run) fixed costs and the variable costs (costs that vary with traffic use) are determined on the basis of national accounts/statistics and a general classification of cost categories. Table 0.19 shows the recommended split into fixed and variable costs for road and rail.
Table 0.19 Classification of cost categories into short run fixed costs and short run variable costs - Road and rail.

<table>
<thead>
<tr>
<th>Road - cost category</th>
<th>Rail - cost category</th>
<th>Short run Fixed costs</th>
<th>Short run Variable costs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Land purchase</td>
<td>Land purchase</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>Construction of new roads</td>
<td>Construction of new lines</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>Enlargement of roads/ adjustment to higher axle loads</td>
<td>Upgrading/enlargement of existing lines</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>Replacement investments</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dressing of thin layers and surfacing</td>
<td>Periodical treatments of route structure</td>
<td>Partly</td>
<td>Partly</td>
</tr>
<tr>
<td>Repairs of bridges, supporting walls and other facilities</td>
<td>Major repairs of bridges, tunnels, switch boxes and platform which are only performed in larger time intervals</td>
<td>Partly</td>
<td>Partly</td>
</tr>
<tr>
<td>Replacement of layers in underground engineering</td>
<td></td>
<td>Partly</td>
<td>Partly</td>
</tr>
<tr>
<td>Replacement of bridges and other facilities which restores the full utility value</td>
<td>Replacement of bridges, tunnels, switch boxes and platforms (or parts of these) as well as replacement of tracks and other facilities which restores the full utility value.</td>
<td>Partly</td>
<td>Partly</td>
</tr>
<tr>
<td>Construction maintenance</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Removal of pot-holes, spilling of joints</td>
<td>Minor repairs</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>Minor repairs</td>
<td>Minor repairs</td>
<td>Partly</td>
<td>Partly</td>
</tr>
<tr>
<td>Pavement renewal</td>
<td>Ballast cleaning, compression</td>
<td>No</td>
<td>Yes</td>
</tr>
</tbody>
</table>

Operation, servicing and ongoing maintenance

- Winter maintenance (thawing of switches, snow sweeping) Yes Partly
- Street marking Yes Partly
- Cleaning, cutting Yes No
- Check of facility condition Yes Partly
- Servicing of bridge beddings, traffic lights for general safety reasons Yes No
- Operation of signalling/telecommunication facilities, switch towers (staff, electric power) Mainly not Yes
- Traction current No Yes
- Overhead Overhead Yes No
- Police/ traffic control Police No Yes
- Time tabling, train planning No Yes

The fixed costs of maintenance, operation and administration for the parts of the networks which are changed by the project can be determined on the basis of this classification. Remaining tasks include to estimate:

- The variable costs of maintenance, operation and administration for the parts of the networks, which are changed by the project
- The changes in infrastructure costs of the parts of the networks, which are not changed by the project (i.e. the existing network).

In order to estimate these costs it is recommended - for pragmatic reasons - to assume that:

- The marginal costs per vehicle can be approximated by the average variable costs
- Average variable costs/marginal costs are constant (and not for instance increasing with traffic).
Given these assumptions, the unit costs per vehicle type can be estimated on the basis of:

- Total variable costs
- Traffic data (number of vehicles per year by vehicle type for the infrastructure, which the cost data refers to)
- Information on which costs each vehicle type incurs.

A possible allocation procedure is outlined in Table 0.20 for the cost categories which were categorised as 'variable' or 'partly variable' in Table 0.19.

Table 0.20 Possible allocation factors for the allocation of variable costs to cost drivers.

<table>
<thead>
<tr>
<th>Variable cost category</th>
<th>Possible allocation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Weight dependent</td>
<td>Axle weight</td>
</tr>
<tr>
<td>Major repairs</td>
<td>Axle weight</td>
</tr>
<tr>
<td>Renewal</td>
<td>Axle weight</td>
</tr>
<tr>
<td>Construction maintenance</td>
<td>Axle weight</td>
</tr>
<tr>
<td>Non-weight dependent</td>
<td>Vehicle kilometres</td>
</tr>
<tr>
<td>Operation, servicing and ongoing maintenance</td>
<td>Vehicle kilometres</td>
</tr>
<tr>
<td>Police</td>
<td>Vehicle kilometres</td>
</tr>
</tbody>
</table>

Source: Simplification of table in Link et al (1999)

A possible approach to allocation according to axle weight is to use equivalent standard axles (ESAs)\(^2\). The ESA factors by vehicle type differ across countries due to for example different compositions of the fleet and different load factors.

As a minimum the classification for vehicle types should include:
- Passenger cars
- Heavy goods vehicles (>3.5 t max gross weight)

Ideally, the classification for vehicle types should include:
- Motorcycles
- Passenger cars
- Buses
- Light goods vehicles (<3,5 t max. gross weight)
- Heavy goods vehicles (>3.5 t max gross weight)

Trains should be classified according to wagon weight and speed, as these are the cost drivers. As a minimum the classification for trains should include:
- Freight trains (wagon load, combined transport, rolling road)
- Passenger trains (High speed trains. Euro-/Intercity and other long distance trains, regional trains, urban rail)

\(^2\) See for example Transport and Road Research Laboratory, 1998.
Ideally, these categories could be sub-divided according to the following criteria:
- Operating requirements (number of stops, required distance to other trains)
- Construction standards (speed)
- Weight (axle weight)
- Number and type of wagons

0.7 Vehicle operating costs

Operating costs are clearly dependent on the prices of goods within a region (e.g. price of fuel, vehicle spare parts, etc.). However, operating costs can also be influenced by the regulatory and institutional characteristics of the environment in which the transport industry operates. This is particularly the case for the rail, shipping and air sectors. Operating cost relationships for road vehicles are far more generic and transferable between countries. Off the shelf models and computer software exists for the calculation of such road vehicle operating costs, however, these models require to be populated with some local data (e.g. fuel costs). It is therefore recommended that local country specific data on prices and relationships for modal operating costs should be utilised in project appraisal.

Whilst we recommend that local relationships and prices are used in the calculation of vehicle operating costs, we recommend that the following cost components are included in that model (see also Nellthorp et al., 1998):

- **Standing cost components**
 - Depreciation (time dependent share)
 - Interest on capital
 - Repair and maintenance costs
 - Materials costs
 - Insurance
 - Overheads
 - Administration

- **Operating cost components**:
 - Personnel costs (if not included in travel time savings – see Chapter 4 of these guidelines);
 - Depreciation (distance related share)
 - Fuel and lubricants

In the absence of local relationships for road vehicle operating costs the generic relationships in the Highway Design Model (HDM) model can be used (HDMGlobal, 2005). This model is also recommended for World Bank funded road projects. The HDM model needs to be populated with some local data reflecting road and vehicle characteristics (including the price of replacement parts). There is no equivalent model to HDM for the rail, air and maritime sec-
tors and as such the operating costs for trains, aircraft and ships should be developed in collaboration with the specialists working in these sectors.

The calculation of the economic benefits (costs) associated with vehicle operating costs varies by mode due to variation in vehicle operating cost relationships between modes. In essence three types of data area required:

- **Demand** - the number of vehicles making a particular origin-destination trip for the Do-Minimum and the Do-Something cases;
- **Vehicle kilometres** – the change in vehicle kilometres induced to the traffic on that particular origin-destination trip for the Do-Minimum and the Do-Something cases; and
- **The unit cost of a vehicle kilometre** – this in turn will require data on:
 - the transport network characteristics (e.g. gradient)
 - vehicle characteristics (e.g. vehicle type, speed, cost of replacement parts and maintenance, load, etc.)
 - vehicle utilisation

Each of these characteristics may vary between the Do-Minimum and Do-Something.

As with travel time savings the user benefit associated with vehicle operating cost savings is calculated at an origin-destination pair level using the rule-of-half (see Chapter 2) and then summed over all origin-destination pairs. Care should be taken to avoid double counting time related cost elements that are included in the values of time (e.g. driver and crew wages).

Ideally, all data for the appraisal should be local. However, it is possible to transfer relationships and prices from other countries, though this is most appropriate for road vehicles rather than rail, air or water modes.