

MARKET IMPACT EVALUATION

ERRAC was set up in 2001 and is the single European body with the competence and capability to help revitalise the European rail sector:

- To make it more competitive
- To foster increased innovation
- To guide research efforts at the European level

ERRAC Project Evaluation Working Group (EWG) Objectives:

- Determine the market impact of previous rail research to improve use of research funding
- Ensure a strategic approach to the prioritisation of rail research

Project Evaluation

- Individual projects are evaluated after they have been completed to ensure successful dissemination of project results
- To ensure that the results of previous rail research can be taken into account for future projects
- To avoid weak market uptake of results by learning the lessons of previous research
- The EWG will provide intelligence based on the project evaluations for input into future European Framework Programmes

ERRAC Project Evaluation Group HVB

EVALUATION FROM JANUARY 2008

ERRAC Project Evaluation Group

HVB High Voltage Booster

PROJECT NAME: High Voltage Booster

Objectives

To design and validate a booster equipment (HVB) for the railway supply systems using static VAR technology able to achieve the following goals:

- To improve electrification system voltage regulation
- To cater for permanent growth in traffic levels
- To allow for the evolution of new traction types
- To reduce capital and running costs

The aim of this device is to compensate for voltage regulation on the electrification system.

In a more practical way

- Technical: maintain overhead line voltage to constant level at the substation to avoid voltage drop at the end of the sector supplied
- Financial: decrease installation cost when possible

HVB: Background

Details

Total Cost: 2 787 187 EU

EU Contribution: 1 402 745 EU

Period: 04/2000 to 12/2002

Scientific Coordinator: Marina FRACCHIA (CRT)

Partners

- INSTITUT NATIONAL DE RECHERCHE SUR LES TRANSPORTS ET LEUR SECURITÉ (FR)
- LABORATOIRE ELECTROTECHNIQUE de GRENOBLE (FR)
- SOCIETE NATIONALE DES CHEMIN DE FER Français/RFF (FR)
- ASI ROBICON (IT)
- CENTRO RECERCA TRAPORTI (IT)
- ITALFERR (IT)
- RAILTRACK (GB)
- UNIVERSITE POLYTECHNIQUE DE MONS (B)
- RAILINFRABEHEER (NL)

HVB: Background

Links to other Projects:

• ... (to precise)

Follow-up Projects

• ... (to precise)

HVB – Tests

Villenoy tests site (France)

[Paris-Nancy railway line, near Meaux east of Paris]

Chathill test site (UK)

HVB: Results

Project Conclusions:

- Operating use relevant
- Will be developed for other projects
- Solution to optimise infrastructure in certain conditions

Achievements

- Voltage gap compensated at the sub-station: 3kV
- Target Cost device achieved (around 1M€)

A comparison with the HVB cost and the installation of a new Electrical Substation is reported in the following diagram:

Economic analysis between HVB cost and the installation of a new electrical substation

HVB: Evaluation criteria

- 1. Were the results implemented in the design of the new products and services? Were these new products/services put into commercial operation **–yes**
- 2. Is new legislation and standardization based on findings from this research project No
- 3. Are the results of the project implemented across Europe or only in a small number of Member States small number of Member States for the moment
- 4. Are the results of the project implemented outside Europe before being accepted in Europe No, first in Europe (GB and F)
- 5. Did the projects increase competitiveness of the European railway sector abroad with regard to products, services, standards and system design Yes: it can decrease the installation cost
- 6. Did the project increase competitiveness of the railway transportation compared to other transport modes Yes: it can decrease the installation cost and it optimises the energy supplied
- 7. Are the results of the project taken into consideration when preparing public tenders **Yes**
- 8. Does the implementation of the project results help facilitate cross-border operations by problem-solving in the domain of interoperability –
- 9. Does the implementation of the project results help facilitate inter-modal operations by problem-solving in the domain of inter-modality –
- 10. Can benefits be assessed in financial terms Yes
- 11. Applicability of results to future scenarios Already implemented in other site and proposed as an alternative in supply scheme
- 12. Usefulness of research procedures for future projects (incl. modelling) –

HVB: Reasons for outcome

HVB: Lessons learnt