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Figure 8 Proposed SEA for a multilayered structure. A, mass impeded equivalent fluid-wall element ↔room 
channel; B, oblique equivalent fluid - wall element ↔room channel; C, rooms ↔room channel (mass law, 
non-resonant); D, room ↔wall channel; E, mass impeded plane equivalent fluid - wall element ↔wall 
channel; F, oblique equivalent fluid-wall element ↔channel; G, wall ↔wall channel (flanking transmission).
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Figure 9 SRI for the multilayered structure comprising the Grey material: measurement (red curve with circles), 
SEA (blue dashed curve) and mass-law prediction (black dotted curve). The SEA model employs no direct 
coupling between the walls. .................................................................................................... 18 

Figure 10 SRI for the multilayered structure comprising the Yellow material: measurement (red curve with 
circles), SEA (blue dashed curve) and mass-law prediction (black dotted curve). The SEA model employs no 
direct coupling between the walls. ............................................................................................ 19 

Figure 11 SRI for the multilayered structure comprising the Grey material: measurement (red curve with circles), 
SEA (blue dashed curve) and mass-law prediction (black dotted curve). The SEA model employs a coupling 
loss factor of 2.5 x 10-3 between the walls. ................................................................................. 19 

Figure 12 SRI for the multilayered structure comprising the Yellow material: measurement (red curve with 
circles), SEA (blue dashed curve) and mass-law prediction (black dotted curve). The SEA model employs a 
coupling loss factor of 1.3 x 10-4 between the walls. ...................................................................... 20 

 

  



4

MID-MOD, D9.2b: Exterior Acoustics Application Case 

1 Executive summary 
 
This report presents measurements of the sound reduction index (SRI) of two generic trim 
panels, together with a statistical energy analysis (SEA). The panels are multi-layered 
structures composed of an aluminium shell with single curvature to which a composite 
consisting of a rubber mat and a porous material is attached; two different composites are 
investigated. The SRI measurements have been performed at The Marcus Wallenberg 
Laboratory for Sound and Vibration Research (MWL) at the Royal Institute of Technology 
(KTH) in Stockholm. 
 
The SRI of these panels is predicted by an SEA model, employing an equivalent fluid to 
model the porous material. The SEA may provide a deeper understanding of the physics of 
the investigated structures. Section 2 presents the structure under study and the sound 
reduction index measurement; Section 3 introduces the SEA of this kind of structure; Section 
4 shows the SRI measurements and the SEA predictions. 

2 The generic trim panel 
The specimen is composed of a curved aluminium panel to which a composite is attached; 
the composite structure comprises porous foam and a rubber mat; two different kinds of 
composites are investigated: a composite Yellow and a composite Grey. The composite is 
glued to the aluminium panel. Figure 1 shows Grey attached to the aluminium panel. 
 

 

Figure 1 From left to right, the aluminium panel, Grey porous material and the rubber mat. 
The porous material is 2.24 cm thick. 
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intensity level (probe model 2260, in conjunction with Larson Davis Real time analyzer 2900); 
in the reverberation room a microphone on a rotating stand measures the space-averaged 
sound pressure level (half-inch microphone, together with a PC running SpectraPLUS); the 
sound pressure is generated by four loudspeakers driven by white noise generated by a B&K 
Noise generator type 1405 and amplified by a NAD 310. Both measurements are done in 
third-octave bands. The cut-off frequency of the anechoic room is 80 Hz and its dimensions 
are 7.00 m x 5.95 m x 5.80 m; the dimensions of the reverberation room are 6.21 m x 7.86 m 
x 5.05 m. 
The employed intensity probe allows measurements up to 5 kHz. The quality factor of the 
intensity measurement, i.e. the difference between intensity and pressure levels, is 
acceptable till 5 kHz for Grey and 2.5 kHz for Yellow; at higher frequencies the assumption of 
no reflections in the anechoic room may be violated due to the measurement procedure, e.g. 
by the person measuring intensity (see also Figure 7). The field in the reverberant room is 
diffuse between 50 Hz and 10 kHz. The SRI measurements are considered valid between 80 
Hz and 2.5 kHz for Yellow and 80 Hz and 5 kHz for Grey. In this frequency ranges, the 
repeatability of the measurement is reliable: the same result is obtained if the plate is 
mounted, dismounted and remounted, and also if the intensity scanning is done in different 
fashions. 
The space-averaged sound pressure level in third-octave bands PL  is acquired via 

SpectraPLUS installed on a PC; the space-averaged sound intensity level in third-octave 
bands InL  is measured via a Larson-Davis real-time analyser. The sound reduction index 

SRI is calculated in MATLAB® using the formula provided in the standard: 
 SRI P InL L  6 . (4) 

The SRIs of Yellow and Grey are reported in Table 10; Figures 9 and Figure 10 show the plot 
of the SRIs: the Yellow and Grey SRI show similar trends. Curiously, at lower frequency Grey 
shows a clear plateau, whereas Yellow oscillates more. 
It is interesting to notice that the measured SRIs have similar trends to those of typical 
building-construction double-walls presented in Reference [3]. Based upon this fact, a 
statistical energy analysis for these multilayered structures is introduced in the next section. 

3 Statistical energy analysis employing an equivalent fluid  
 
The first step in any SEA is the identification of the elements. An option may be to identify an 
element with a physical substructure. This choice, however, is not optimal if within a 
substructure, or due to the interaction of two or more substructures, various wave-types 
exist. Therefore, a preferred choice is to assign SEA elements to the wave-types. Once the 
elements are identified, the equations expressing the energy balance between the elements 
are evaluated. The unknowns in these equations are the modal energy of each SEA element, 
where modal energy is the total energy divided by the (asymptotic) modal density, or number 
of modes per unit frequency. The losses in SEA may be of two different kinds: those 
accounting for internal losses, quantified by the modal overlap factor, and those accounting 
for coupling losses, quantified by the conductivity. 
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3.1 The equivalent fluid 
In the statistical energy analysis of these structures an equivalent fluid substitutes for the 
porous material in the composite. This fluid has bulk modulus and density equivalent to those 
of the porous material, which are taken from Reference [4]. A similar approach is used by 
Morse and Ingard to study the propagation of sound wave in porous media with rigid frames 
[5]. The bulk modulus of the equivalent fluid reads 

 ,s
e s sR P

G
i q

   


 
 
    
  

0

0

1

1
 (6) 

where 

 ,
q i

G


 
       

2

02
1   (7) 

and the other quantities are detailed in Tables 1-3. The density of the equivalent fluid reads: 

 ,e a

ib  


  0  (8) 

where 0  is the density of the fluid in the pores, a  is the additional mass due to the inertia 

coupling between the pore-fluid and the frame and b is the viscous drag; the expressions of 
the two last quantities are given by: 
   ,a   0 1  (9) 

and 

 ,b G 2  (10) 

where   is the tortuosity,   is the static flow resistance and 

 .
q i

G
 
 
 

    

2

02
1  (11) 

Table 3 details the remaining quantities; see Reference [4] for further details on these 
quantities. The velocity of the equivalent fluid follows: 

 .e
e

e

R
c


  (12) 

The sound in the equivalent fluid satisfies Helmholtz equations and is between the two walls, 
which are parallel to the x-y plane and are separated by a distance z=d. For harmonic motion  

i te  , the equations of motion of the fluid and of the walls are 

 
; ;

; ; ,

e e
e

w w w w

p k p k
c

B u m u v p v v





   

     

2

2
1 2

0

1 2

 

  

 (13) 

Where p  is the time rms sound pressure in the equivalent fluid and wu  is the time rms 

displacement in the transverse direction of wall w (i.e., the aluminium panel and the rubber 
mat). The wall velocities equal the equivalent-fluid velocity at their interfaces and it follows 
that 

 
 , , ,

; ; .w
w

e

p x y z z
i u z z d

i z




 
 

   
 1 2

1
0


  (14) 
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