

Operationally Driven Airspace Traffic Structure based on Dynamic Airspace and MultiLayered Planning: SUPER-HIGHWAY

Overall Project Description

Presentation Objectives

- Describe the SUPER HIGHWAY Project
 - Overview
 - Objectives
 - Technical Approach

Project Objectives

Expected Benefits

Efficiency & Safety Capacity Economy Reliability Smaller flight times • Ensure on-time **Airlines** • Ensure on-time No incidents Reduced fees performance performance Pilots Improved situational Decreased workload Accurate flight paths awareness • Improved situational • Predictable a/c awareness Controllers Decreased workload Lower workload trajectories Increased Predictability Smaller aircraft to Service Providers Increased throughput Reduce delays Decreased incident controller ratio rate

Capacity and Efficiency Objectives

- Increase traffic rate during peak hours
 - Extra capacity when demand exceeds the achievable movement rate using conventional procedures
- Increase traffic rate per annum
 - In sectors limited to a maximum number of aircraft per year due to sector workload
- Increase efficiency by reducing the delays:
 - Through the operation in a more predictive environment
 - Easing adjustments due to unpredictable events and exceptions
 - Providing just-in-time delivery of traffic
- Increase efficiency by optimising the en-route & TMA interface:
 - Capability to operate in a more coupled en-route / TMA interface
 - Optimised airspace and route structure

Safety Objectives

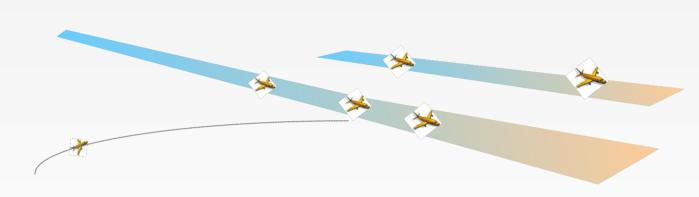
- Use Layered Planning Functions to de-conflict and manage complexity through network, flow and inside flow processes
 - Standardize working methods
- Use Automated support tools
 - Better exploitation of the predictability and the complexity indicators
- Increased situational awareness of controllers and pilots
 - CDM procedures
 - Technological enablers (e.g. ASAS CDTI for pilots).

Environmental Objectives

- Limit emissions and noise,
 - Use of improved trajectories
 - Use of direct city pair lanes
 - Improve planned flight times
- Preserve natural resources (fossil energy)
 - Reduced fuel consumption (for the same reasons)

Strategy to achieve the objectives

- Decrease the Workload per Aircraft
 - Comparison between the workload per aircraft baseline results and the workload per aircraft assessments
- Improve Situational Awareness
 - Comparison between the baseline average separation and the average separation obtained in the assessments
- Ensure On Time Performance
 - Comparison between the minimum theoretical flight time along the proposed routes and the average of the flight time obtained from the assessments

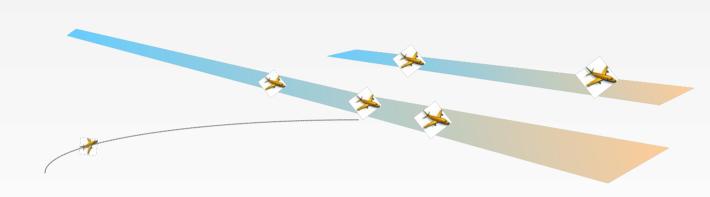


Project Overview

IMPROVING THE EFFICIENCY

Ensuring Flight Efficiency using pre-planned conflict trajectories

Enhancing ATM Efficiency by decreasing controller workload per aircraft:


- Moving tasks to the pilot: ASAS
- Moving tasks to the ATC: Automation concept
- Improving the airspace design: PRNAV, FLAS,
 Parallel Routes, and the Super Highways

IMPROVING CAPACITY

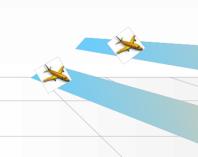
Decrease the task-load to reduce the workload per aircraft

- Avoiding constraints from National Borders
- Using new concepts and enablers:
 - · ASAS
 - •CDM / SWIM
 - •D/L
 - Layered planning

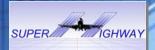
REDUCING THE ENVIRONMENTAL IMPACT

Reduce the emissions per flight through the improvement of the flight profile

- ➤ Improve the airspace design:
 - Shorten the horizontal paths
 - Optimise cruise flight levels
- Reduce the time spent in stacks perflight
 - Improve on time performance
 - Improve predictability of trajectories
 - Reduce flight-disturbance (conflict-free trajectories)


IMPROVING SAFETY

Increased predictability through the provision of conflict free routes


- Improved Planning horizons
- Layered Planning
- ASAS
- Trajectory based procedures
- Separation Management

Simplifying the route structure

 Air Traffic flows segregated by speed & cruise regime

Technical Approach

Two drivers

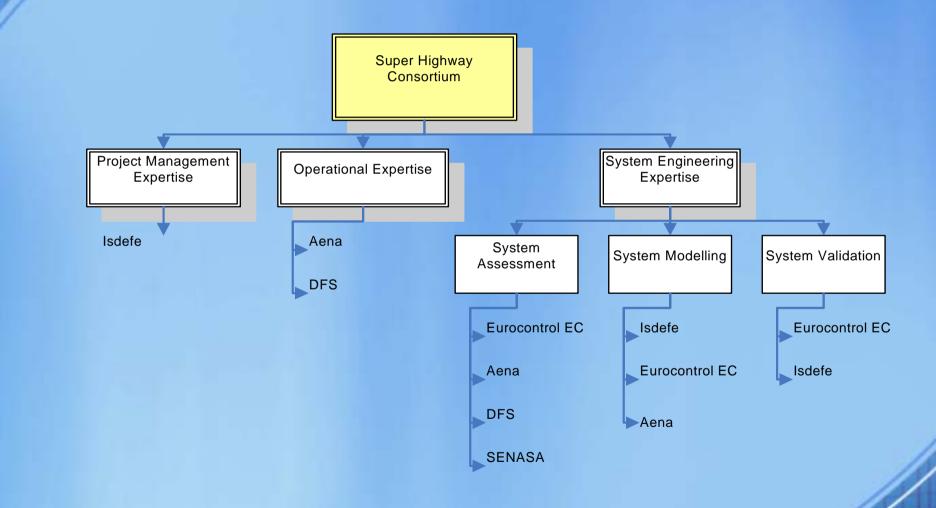
- Based on the innovation of the operational framework rather that on the development of new technologies
- Emphasis placed on obtaining maximum synergies between locally available systems and the overall European framework
 - Optimise the overall efficiency of the system
 - Guarantee accessibility and equity of the proposed structure

Elaborate Operational Concept Scenarios

- Exploit existing Operational Concept principles to arrange the "major" traffic flows and patterns using pre-defined routes
- Airspace structure located on the Single European Sky functional blocks of airspace
 - No constraints coming from national borders
 - Two essential components:
 - Entry / exit into the SUPER HIGHWAY (junctions)
 - Routes (lanes)

Assessments

- Focused on the impact on the controllers
- Performed on the operational concept scenarios in the two main SUPER HIGHWAY elements: lanes and junctions.
- Aspects considered for the Planner Controller:
 - Conflict Search for future traffic, Planning of entry/exit conditions and Sector Coordination.
- Aspects considered for the Executive Controller:
 - Planning (as regards conflict solving)
 - Actual traffic conflict search
 - Monitoring (deviations from flight track)
 - Implementation of solutions
 - Initial and transfer calls



Consortium & Participation

Consortium Structure

9 Sixth Framework Programme

How to participate

- Users Workshop → Around October 2006
 - Technical nature: Discuss and review the proposed Super-Highway structures
 - (small) Limited assistance
- User Forum → Around February 2008
 - Dissemination of results
 - (larger) Limited assistance

Let me know if you are interested!!!

http://www.sh.isdefe.es/