



Project no. FP6 - 044602

## MOBIDAYS Sustainable Mobility Days

## SPECIFIC SUPPORT ACTION SIXTH FRAMEWORK PROGRAMME PRIORITY 6.2 SUSTAINABLE SURFACE TRANSPORT

Publishable Report

Due date of deliverable: June 2008 Actual submission date: June 2010

Start date of project: **01-01-2007** Organisation name of lead contractor for this deliverable: **CIRPS**  Duration: 18 Months

| Proje | Project co-funded by the European Commission within the Sixth Framework Programme (2002-2006) |   |  |  |  |  |  |  |
|-------|-----------------------------------------------------------------------------------------------|---|--|--|--|--|--|--|
|       | Dissemination Level                                                                           |   |  |  |  |  |  |  |
| PU    | Public                                                                                        | Х |  |  |  |  |  |  |
| PP    | Restricted to other programme participants (including the Commission Services)                |   |  |  |  |  |  |  |
| RE    | Restricted to a group specified by the consortium (including the Commission Services)         | Х |  |  |  |  |  |  |
| СО    | Confidential, only for members of the consortium (including the Commission Services)          |   |  |  |  |  |  |  |

## INDEX

| 1  | Intr    | oduction                                                                        | 3  |
|----|---------|---------------------------------------------------------------------------------|----|
| 2  | Sus     | tainable transport: definition                                                  | 3  |
| 3  | Eur     | opean research on Socio economic Barriers to sustainable mobility               | 4  |
|    | 3.1     | Overview of the considered projects                                             | 4  |
|    | 3.2     | Conference objectives and outputs                                               | 10 |
|    | 3.3     | Projects analysis                                                               | 13 |
| 4  | Eur     | opean research on vehicles for sustainable mobility                             | 24 |
|    | 4.1     | Overview of the considered projects                                             | 24 |
|    | 4.2     | Conference objectives and outputs                                               | 25 |
|    | 4.3     | Projects analysis                                                               | 26 |
| 5  | Eur     | opean research on infrastructures for sustainable mobility                      | 35 |
|    | 5.1     | Overview of the considered projects                                             | 35 |
|    | 5.2     | Conference objectives and outputs                                               | 39 |
|    | 5.3     | Projects analysis                                                               | 42 |
| 6  | Lar     | ge-scale demonstration projects on sustainable mobility in Europe and worldwide | 57 |
|    | 6.1     | Overview of the considered projects                                             | 57 |
|    | 6.2     | Conference objectives and outputs                                               | 60 |
|    | 6.3     | Projects analysis                                                               | 64 |
| 7  | Les     | sons learnt and conclusions                                                     | 78 |
| Bi | ibliogr | aphy                                                                            | 81 |
| Li | st of t | he tables                                                                       | 85 |

#### Authors:

Vincenzo Naso, Sapienza University of Rome-Interuniversity Research Centre of Sustainable Development, Rome Fabio Orecchini, Sapienza University of Rome-Interuniversity Research Centre of Sustainable Development, Rome Paola Artuso, Sapienza University of Rome-Interuniversity Research Centre of Sustainable Development, Rome Franca Farioli, Sapienza University of Rome-Interuniversity Research Centre of Sustainable Development, Rome Hana Bruhova-Foltynova, Charles University-Environment Centre, Prague

Vojtech Maca, Charles University-Environment Centre, Prague

Marcello Contestabile, Imperial College of Science-Technology and MedicinImperial Medicine Energy Futures Lab, London António Luis Moreira, Instituto Superior Técnico-Center for Innovation, Technology and Policy Research, IN+, Lisbon

# **1** Project execution

#### The Mobidays Consortium:

Participant organisation name: Interuniversity Research Centre for Sustainable Development- Energy and Environment Group, University of Rome "La Sapienza" Participant short name: CIRPS Country: Italy Role: Coordinator Participant organisation name: Charles University Environment Centre, Prague Participant short name: UK Country: Czech Republic Role: Partner Participant organisation name: Energy Futures Lab, Imperial College London Participant short name: ICL Country: United Kingdom Role: Partner Participant organisation name: Center for Innovation, Technology and Policy Research, IN+, IST Instituto Superior Tecnico, Lisbon Participant short name: IST Country: Portugal Role: Partner

## 1.1 Introduction

The report intends to provide an overview of a selection of the projects on sustainable mobility funded by the European Commission (EC). In order to explore, discuss and disseminate the results obtained and the improvements required in the field of sustainable surface transport, the project clearly identifies three main areas: socio-economic and environmental aspects, infrastructure and vehicles. To complete the overview, the major European and non-European demonstration projects on sustainable transport were analyzed.

Some of them were presented during one of the three conferences organized in the framework of the MOBIDAYS projects, other ones were chosen because considered relevant to the analysis. To individualize which projects contributed to make the transport more sustainable, the MOBIDAYS consortium drew up a definition of Sustainable mobility, taking into account the different aspects of sustainability and mapping the projects on the basis of this definition. Thus, some criteria of project selection is described, the outputs of the conferences organized in Prague, London and Rome are presented and an analysis of the projects has been reported in this document for each topic. The considered aspects are the research contents, the consortium, the results, the market readiness.

Finally, some comments about the barriers to access information about the projects are reported and some solutions to overcome them are proposed.

## 1.2 Sustainable transport: definition

# Sustainable mobility is such if supports the simultaneous achievement of long-term economic growth, social welfare and environmental protection.

This translates into a number of policy objectives that a sustainable transport system, in the EU and elsewhere, has to simultaneously contribute to. A list of the main objectives in accessibility, environmental and economic points of views is here provided:

- 1. Ensure mobility equity and accessibility: high-quality at affordable prices for all users;
- 2. Ensure a high level of safety and reliability in mobility of people and goods;
- 3. Promote the efficient combination of different transport modes (co-modality);
- 4. Contribute to the reduction of resource utilization, thus including energy (reducing the consumption of fossil fuels), land and materials;
- 5. Contribute to increasing the use of renewable energy sources and local feedstock;
- 6. Limit emissions and waste within planet's absorption capacity for avoiding local air pollution and eco-system degradation, and limit transport noise;
- 7. Contribute to the reduction of emissions of  $CO_2$  and other GHGs;
- 8. Promote innovation and the development of transport technologies that are competitive on global markets;
- Increase the rate of economic return for all stakeholders, including those employed in the mobility/transport sector as well as the end-users of transport services, be they individuals or businesses;
- 10. Contribute to regional development.

## 1.3 European research on Socio economic Barriers to sustainable mobility

## **1.3.1** Overview of the considered projects

The criteria for the project selection process were i) their research relevance for the topic (socioeconomic barriers to sustainable mobility), ii) respect of the research audience for the project team and iii) published outputs of the relevant EU funded projects. One limitation that at the same time served as a selection criterion was the possibility to get information about the project in the public domain (project web pages, published articles in scientific journals etc.).

From about 250 projects, we selected 46 projects which were referred to in the brochure on "European Research on Socio-Economic Barriers to Sustainable Mobility". Nine projects were presented at the Prague conference.

Table 1 summarizes the projects depicted in the brochure. More details on those projects including their linkages to sustainable mobility objectives are further elaborated in project analysis below.

| Acronym  | Full name                                                  | FP<br>(EC Framework<br>Programme) | Coordinator                                                 | Partners<br>(number of<br>partners) | Website              | Budget (M€) |                    | Project<br>timing         |
|----------|------------------------------------------------------------|-----------------------------------|-------------------------------------------------------------|-------------------------------------|----------------------|-------------|--------------------|---------------------------|
|          |                                                            |                                   |                                                             |                                     |                      | Total       | EC<br>contribution |                           |
| ACCEPTH2 | Public acceptance of<br>hydrogen transport<br>technologies | 5                                 | Imperial College<br>London,<br>Department of<br>Environment | 7                                   | www.accepth2.c<br>om | 0.3         | 0.3                | 01.01.2003-<br>30.06.2005 |

#### Table 1. Summery table of the projects on Socio-economic barriers

| AFFORD              | Acceptability of Fiscal and<br>Financial Measures and<br>Organizational Requirements<br>for Demand Management                                                                              | 4            | Government<br>Institute for<br>Economic<br>Research<br>(VATT)  | 10 | no longer<br>available                                                                                                       | 1,1  | 0,7  | 01.02.1998-<br>31.12.1999 |
|---------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|----------------------------------------------------------------|----|------------------------------------------------------------------------------------------------------------------------------|------|------|---------------------------|
| ARTISTS             | Arterial Streets towards<br>Sustainability                                                                                                                                                 | 5            | Lund University                                                | 16 | http://www.tft.lth.<br>se/artists/                                                                                           | 2.2  | 1.7  | 01.12.2001-<br>30.11.2004 |
| ASI                 | Assess Implementations in the frame of Cities-of-tomorrow                                                                                                                                  | 5            | Factum OHG                                                     | 5  | n.a.                                                                                                                         | 0.4  | 0.4  | 01.02.2003-<br>31.05.2005 |
| ASSESS              | Assessment of the<br>contribution of the TEN and<br>other transport policy<br>measures to the midterm<br>implementation of the White<br>Paper on the European<br>Transport Policy for 2010 | DG-TREN      | Transport &<br>Mobility Leuven                                 | 7  | http://ec.europa.<br>eu/transport/whit<br>e_paper/mid_ter<br>m_revision/asse<br>ss_en.htm                                    | n.a. | n.a. | 2005                      |
| CIVITAS-<br>CARAVEL | TRAVELLING TOWARDS A<br>NEW MOBILITY                                                                                                                                                       | 6            | Genova<br>municipality                                         | 21 | http://www.civita<br>s-<br>initiative.org/proj<br>ect_sheet?lan=e<br>n&id=3&PHPSE<br>SSID=84a39d7e<br>8defe723130675<br>1bd7 | 27.6 | 13.2 | 01.02.2005-<br>01.02.2009 |
| CIVITAS-<br>MOBILIS | Mobility initiatives for local integration and sustainability                                                                                                                              | 6            | Tisséo SMTC                                                    | 32 | www.civitas-<br>mobilis.org                                                                                                  | 21.8 | 9.3  | 01.02.2005-<br>01.02.2009 |
| CIVITAS-SMILE       | Clean and better transport in cities                                                                                                                                                       | 6            | Malmö<br>municipality                                          | 27 | http://www.civita<br>s-<br>initiative.org/proj<br>ect_sheet?lan=e<br>n&id=1                                                  | 27.5 | 15.4 | 01.02.2005-<br>30.01.2009 |
| DESIRE              | Design for Inter Urban Road<br>Pricing Schemes in Europe                                                                                                                                   | 5            | Tispt consultores<br>em transportes.<br>inovação e<br>sistemas | 17 | http://www.tis.pt/<br>proj/desire.htm                                                                                        | 2.7  | 1.3  | 01.09.2000-<br>28.02.2003 |
| ENV-e-CITY          | Towards an Environmentally<br>Viable Electronic City                                                                                                                                       | ECONTEN<br>T | Aristotle<br>University of<br>Thessaloniki                     | 10 | no longer<br>available                                                                                                       |      | 1.7  | 01.01.2002-<br>31.12.2003 |
| EURoPrice           | Energy Efficiency of Urban<br>Road Pricing Investigation in<br>Capitals of Europe                                                                                                          | SAVE 2       | University of<br>Dublin. Trinity<br>College                    | 2  | n.a.                                                                                                                         | 0.9  | 0.4  | 01.02.1997-<br>31.01.1999 |
| FATIMA              | Financial assistance for transport integration in metropolitan areas                                                                                                                       | 4            | ITS University of<br>Leeds                                     | 6  | http://www.its.lee<br>ds.ac.uk/projects<br>/fatima                                                                           | 0.8  | 0.5  | 01.04.1997-<br>30.09.1998 |

| GRACE                  | Generalization of research<br>on accounts and cost<br>estimation                                                 | 6       | ITS University of<br>Leeds                                                 | 15 | www.grace-<br>eu.org                         | 3.1  | 2.4  | 01.07.2005-<br>31.12.2007 |
|------------------------|------------------------------------------------------------------------------------------------------------------|---------|----------------------------------------------------------------------------|----|----------------------------------------------|------|------|---------------------------|
| HEATCO                 | Developing Harmonised<br>European Approaches for<br>Transport Costing and<br>Project Assessment                  | 6       | IER Uni Stuttgart                                                          | 14 | http://heatco.ier.<br>uni-stuttgart.de       | 1.5  | 1.3  | 29.02.2004-<br>29.05.2006 |
| HYWAYS                 | European Hydrogen Energy<br>Roadmap                                                                              | 6       | L-B-<br>Systemtechnik<br>Gmbh                                              | 34 | http://www.hywa<br>ys.de/                    | 7.9  | 4.0  | 01.04.2001-<br>31.03.2007 |
| HyFLEET:CUTE           | Hydrogen for clean urban<br>transport in Europe                                                                  | 6       | DaimlerChrysler<br>AG                                                      | 31 | www.global-<br>hydrogen-bus-<br>platform.com | 43.0 | 19.0 | 10.01.2006-<br>09.09.2009 |
| IASON                  | Integrated assessment of<br>spatial economic and<br>network effects of transport<br>investments and policies     | 5       | Netherlands<br>Organisation for<br>Applied<br>Scientific<br>Research - TNO | 10 | n.a.                                         | n.a. | n.a. | 01.04.2001-<br>31.12.2003 |
| LUTR                   | Land Use and Transportation Research                                                                             | 5       | University of<br>Leeds                                                     |    | www.lutr.net                                 | 0.3  | 0.3  | 01.06.2001-<br>31.12.2003 |
| MC-ICAM                | Implementation of Marginal<br>Cost Pricing in Transport –<br>Integrated Conceptual and<br>Applied Model Analysis | 5       | Government<br>Institute for<br>Economic<br>Research                        | 14 | www.its.leeds.ac<br>.uk/projects/mcic<br>am/ |      | 1.8  | 01.04.2001-<br>30.06.2003 |
| NOE<br>BIOENERGY       | Overcoming Barriers to<br>Bioenergy                                                                              | 6       | VTT Valtion<br>Teknillinen<br>Tutkimuskeskus                               | 8  | www.bioenergyn<br>oe.org                     | 8.1  | 8.0  | 01.01.2004-<br>31.12.2008 |
| NPF URBAN<br>TRANSPORT | National Policy Frameworks<br>for Urban Transport                                                                | DG-TREN | ISIS France                                                                | 3  | www.npf-<br>urbantransport.o<br>rg           | n.a. | n.a. | 01.01.2003-<br>31.12.2005 |
| OPTIMA                 | Optimisation of policies for<br>transport integration in<br>metropolitan areas                                   | 4       | University of<br>Leeds                                                     | 6  | www.its.leeds.ac<br>.uk/projects/opti<br>ma/ | 0.8  | 0.5  | 01.12.1995-<br>31.05.1997 |

| PATS         | Pricing acceptability in the transport sector                                                             | 4                                  | Transportes,<br>inovacao e<br>sistemas a.c.e.                   | 9  | n.a.                                                                                                         | 0.7  | 0.4  | 01.01.1999-<br>30.6.2000  |
|--------------|-----------------------------------------------------------------------------------------------------------|------------------------------------|-----------------------------------------------------------------|----|--------------------------------------------------------------------------------------------------------------|------|------|---------------------------|
| PLUME        | Planning and urban mobility in Europe                                                                     | 5                                  | Transport and travel research                                   | 41 | www.lutr.net                                                                                                 | 1.7  | 1.7  | 01.11.2002-<br>31.07.2005 |
| PREMIA       | Effectiveness of measures to<br>accelerate market<br>introduction of biofuels and<br>hydrogen             | 6                                  | Vito                                                            | 6  | www.premia-<br>eu.org                                                                                        | n.a. | n.a. | 01.06.2004-<br>31.05.2007 |
| PRIMA        | Pricing methodologies acceptance                                                                          | 4                                  | Inregia AB                                                      | 8  | n.a.                                                                                                         | 0.7  | 0.3  | 01.01.1999-<br>30.04.2000 |
| PROBIODIESEL | Overcoming non-<br>technological barriers                                                                 | Intelligent<br>Energy/Alte<br>rner | Acciona<br>Biocombustibles                                      | 5  | www.probiodies<br>el.com                                                                                     | n.a. | n.a. | 2006-<br>2008             |
| PROGRESS     | Pricing ROad use for Greater<br>Responsibility, Efficiency and<br>Sustainability in citieS                | 5                                  | BCC-Bristol city council                                        | 29 | www.progress-<br>project.org                                                                                 | 18.2 | 7.2  | 01.06.2000-<br>31.05.2004 |
| PROMPT       | New means to promote<br>pedestrian traffic in cities                                                      | 5                                  | Technical<br>research centre<br>of Finland                      | 7  | http://prompt.vtt.f<br>i/                                                                                    | 1.5  | 0.7  | 01.03.2000-<br>31.12.2003 |
| PROPOLIS     | Planning and research of<br>policies for land use and<br>transport for increasing<br>urban sustainability | 5                                  | LT Consultants,<br>Finland                                      | 8  | www.ltcon.fi/pro<br>polis                                                                                    | 1.6  | 1.0  | 01.01.2000-<br>30.6.2003  |
| PROSPECTS    | Procedures for<br>recommending optimal<br>sustainable planning of<br>european city transport<br>systems   | 5                                  | University of<br>Leeds                                          | 8  | http://www.ivv.tu<br>wien.ac.at/forsch<br>ung/projekte/inte<br>mational-<br>projects/prospec<br>ts-2000.html | 2.1  | 1.3  | 01.02.2000-<br>31.01.2003 |
| RECORDIT     | Real cost reduction of door-<br>to-door intermodal transport                                              | 5                                  | ISIS - Istituto di<br>Studi per<br>l'Informatica e i<br>Sistemi | 9  | www.recordit.org                                                                                             |      | 1.5  | 01.01.2000-<br>31.12.2001 |

| REFUEL           | planning the road ahead for<br>biofuels                                                                       | Intelligent<br>Energy/Alte<br>rner | ECN                                                                           | 7  | www.ecn.nl/refu<br>el                 | n.a. | n.a. | 2006-<br>2008             |
|------------------|---------------------------------------------------------------------------------------------------------------|------------------------------------|-------------------------------------------------------------------------------|----|---------------------------------------|------|------|---------------------------|
| SAMI             | Strategic Assessment<br>Methodology for the<br>Interaction of CTP<br>Instrument                               | 4                                  | VTT - Technical<br>Research Centre<br>of Finland                              | 10 | n.a.                                  | 0.9  | 0.7  | 01.06.1997-<br>31.05.2000 |
| SCENESUSTEC<br>H | Scenarios for sustainable<br>society: car technology<br>systems and the sociology of<br>embedded technologies | 4                                  | Trinity College<br>Dublin                                                     | 4  | n.a.                                  | n.a. | n.a. | 01.02.1998-<br>31.01.2000 |
| SPARTACUS        | System for planning and research in towns and cities for urban sustainability                                 | 4                                  | LT - Consultants<br>Ltd.                                                      | 5  | http://www.ltcon.<br>fi               | n.a. | n.a. | 01.05.1996-<br>31.07.1998 |
| SPRITE           | Separating the intensity of<br>transport from economic<br>growth                                              | 5                                  | University of<br>Leeds                                                        | 4  | www.its.leeds.ac<br>.uk/sprite        | n.a. | n.a. | 01.04.2000-<br>30.06.2001 |
| STEPs            | Scenarios for the Transport<br>system and Energy supply<br>and their Potential effects                        | 6                                  | Buck consultants international b.v.                                           | 14 | www.steps-<br>eu.com                  | 0.9  | 0.9  | 15.01.2004-<br>14.07.2006 |
| SUTRA            | Sustainable Urban<br>Transportation                                                                           | 5                                  | Environmental<br>Software and<br>Services GmbH<br>(ESS)                       | 8  | www.ess.co.at/S<br>UTRA/              | 2.5  | 1.3  | 01.07.2000-<br>01.07.2003 |
| TRANSPLUS        | Transport, planning, land-<br>use and sustainability                                                          | 5                                  | ISIS - Istituto di<br>Studi per<br>l'Informatica e i<br>Sistemi               | 18 | http://www.trans<br>plus.net/         | 3.2  | 2.0  | 01.04.2000-<br>30.11.2003 |
| TRANS-TOOLS      | TOOLS for Transport<br>forecasting and Scenario<br>testing                                                    | 6                                  | TNO -<br>Netherlands<br>Organisation for<br>Applied<br>Scientific<br>Research | 8  | http://www.inro.t<br>no.nl/transtools | 1.4  | 1.2  | 01.10.2004-<br>01.10.2006 |

| TRIAS     | Sustainability Impact<br>Assessment of Strategies<br>Integrating Transport,<br>Technology and Energy<br>Scenarios                                                           | 6 | Fraunhofer-<br>gesellschaft zur<br>förderung der<br>angewandten<br>forschung | 4  | www.isi.fraunhof<br>er.de/trias                    | 1.1  | 0.6 | 01.04.2005-<br>31.03.2007 |
|-----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|------------------------------------------------------------------------------|----|----------------------------------------------------|------|-----|---------------------------|
| UNITE     | Unification of accounts and<br>marginal costs for transport<br>efficiency                                                                                                   | 5 | University of<br>Leeds                                                       | 20 | www.its.leeds.ac<br>.uk/unite                      | 0    | 3.2 | 01.01.2000-<br>30.09.2002 |
| VIEWLS    | Clear views on clean fuels                                                                                                                                                  | 5 | SenterNovem                                                                  | 19 | www.viewls.org                                     | 2.1  | 1.2 | 01.02.2003-<br>31.01.2005 |
| WALCYNG   | How to enhance walking and<br>cycling instead of shorter car<br>trips and to make these<br>modes safer                                                                      | 4 | Lund Institute of<br>Technology                                              | 10 | http://www.tft.lth.<br>se/research/walc<br>yng.htm | 0.9  | 0.5 | 01.03.1996-<br>31.8.1997  |
| ZEROREGIO | Lombardia & Rhein-Main<br>towards Zero Emission:<br>Development &<br>Demonstration of<br>Infrastructure Systems for<br>Alternative Motor Fuels (Bio-<br>fuels and Hydrogen) | 6 | Infraserv GmbH<br>& Co. Höchst<br>KG                                         | 16 | www.zeroregio.c<br>om                              | 18.0 | 7.5 | 15.11.2004-<br>15.11.2009 |

## **1.3.2** Conference objectives and outputs

The conference on Socio-economic barriers to sustainable transport took place on June 18, 2007 in the Charles University headquarters, Ovocny trh 3, Prague. The conference was organized by the Charles University Environment Centre in Prague.

The aim of the conference was to introduce European projects on the selected socio-economic barriers to sustainable transport, their main findings and recommendations. Simultaneously, problems observed during the implementation of these projects and the possibility of their overcoming was discussed.

The economic aspects of sustainable mobility included competitiveness and economic development aspects, comprising the following topics: direct and external costs of transport; transport investment appraisal; regulation of transport services; transport infrastructure pricing; drivers of demand for transport; links between transport, land-use planning and regional development; development of scenarios and evaluation of policies.

The social aspects dealt mainly with equity and accessibility issues, meaning that the benefits of transport strategies should be distributed reasonably equally (social inclusion) and various facilities (employment, shopping, leisure etc.) are easy to reach.

The conference was dominated by two prominent themes – assessment of transport trends and impacts, and breaking dependence on oil. Particularly, results of research and demonstration projects from the 5th and 6th Research Technological Development and Demonstration Framework Programme (RTD FP) were presented.

#### Speaker selection process

First we contacted 30 researchers working on 16 European projects from 11 European countries to have a presentation at the conference. Finally we managed to have a presentation about 9 European projects. We chose the projects according to their research relevance for the topic, respect of the research audience and published outputs of the relevant EU funded project. Mr. Henrik Gudmundsson was contacted through the electronic registration system (from the questionnaire).

Altogether about 90 participants from various EC countries took place at the conference. They were researchers, students, policymakers, ministerial officers (the Czech Ministry of Transport, Ministry of Environment, Ministry of Industry and Trade) and NGO representatives.

Table 2 gives an overview of speakers and selected projects presented at the conference.

| Name               | Institution                                          | Institution quarters | Projects<br>presented | Title of presentation                                                      |
|--------------------|------------------------------------------------------|----------------------|-----------------------|----------------------------------------------------------------------------|
| Michael Wegener    | Spikermann & Wegener, Urban<br>and Regional Research | Germany              | STEPs                 | The Challenge of<br>Energy Scarcity for<br>Regions and Cities in<br>Europe |
| Henrik Gudmundsson | Danish Transport Research<br>Institute               | Denmark              | IMPACT                | Research in barriers<br>for implementation of<br>sustainable mobility      |

#### Table 2 Speakers and projects presented at the Prague conference

| Rainer Friedrich | IER University of Stuttgart                            | Germany    | HEATCO                   | Harmonised<br>European<br>Approaches for<br>Transport Costing<br>and Project<br>Assessment |
|------------------|--------------------------------------------------------|------------|--------------------------|--------------------------------------------------------------------------------------------|
| Reinhold Wurster | HyWays Coordination Office                             | Germany    | HyWays                   | A European<br>Hydrogen Energy<br>Roadmap                                                   |
| Georges Feltz    | City of Luxembourg                                     | Luxembourg | CUTE and<br>HyFLEET:CUTE | The operators' view and experiences                                                        |
| Ashok Rastogi    | Becker Technologies                                    | Germany    | ZERO REGIO               | Lombardia & Rhein-<br>Main towards Zero<br>Emission                                        |
| Kes McCormick    | IIIEE Lund University                                  | Sweden     | Noe-Bioenergy            | Overcoming Barriers to Bioenergy                                                           |
| Juliane Muth     | Volkswagen AG                                          | Germany    | RENEW                    | Renewable Fuels for<br>Advanced<br>Powertrains                                             |
| Luc Pelkmans     | VITO - Flemish Institute for<br>Technological Research | Belgium    | PREMIA                   | Impact Assessment<br>of Measures to<br>Support the Market<br>Introduction of<br>Biofuels   |

#### Conference minutes

The conference participants were welcomed by professor Bedrich Moldan, director of the Charles University Environment Center on behalf of organizers, and professor Jan Skrha, vice-rector of the University. Professor Moldan in his introductory speech emphasised that transportation should not only contribute to sustainable development but should become sustainable in itself. He noted that in order to mitigate negative impacts of transport, notably on human health and the environment, every transport mode potential should be employed, both for single mode and in co-modality or in shifting the traffic to more sustainable modes. The energy security issue represents an urgent challenge to a substantial improvement of energy efficiency in the transport sector and as well as development of alternative fuels and powertrains.

Professor Fabio Orecchini from Interuniversity Centre for Research on Sustainable Development (CIRPS) at Sapienza University of Rome introduced the MOBIDAYS project. He defined the goal of the project as twofold – to support the dissemination of EC funded research results and applications/demonstrations dealing with sustainable mobility topics but at the same time to

analyse likely gaps and inconsistencies in the research focus that should be addressed in the next phases of implementation of the 7th Framework Programme.

The introductory section was closed by Mr. Martin Skarka from the Technology Centre of the Academy of Sciences of the Czech Republic. He summarized transport research topics under the 7th Framework Programme.

In the following discussion a few key issues such as a difference between transport and mobility or the importance of accessibility were mentioned. It was also pointed out that a lot of sustainable mobility related research is funded under the Framework Programmes not only in transport research but also other socio-economic topics.

The next section devoted to assessment of transport trends and impacts was opened with the presentation of the STEPs project by professor Michael Wegener from Dortmund based consultancy Spikermann & Wegener. According to modelling done in the project rising energy prices will lead to substantial changes in mobility of households and firms that will affect economic development of large parts of Europe. Furthermore, it will lead to internal reorganisation of cities to accommodate them to high density mixed-use. An optimal approach to mitigate these impacts should be complex and should include infrastructure pricing, investments in public transport and integrate transport and land-use planning.

Mr. Henrik Gudmundsson from the Danish Transport Research Institute presented ongoing project IMPACT that is a part of TransportMistra program, funded by Swedish Mistra Foundation. This project deals with implementation research applied to sustainable mobility particularly focusing on five case studies (EC Biofuel Directive, UK 10-year plan for transport, Stockholm Congestion Charging, "Ørestad" regional planning in Copenhagen, and TetraPak). Main research themes include long-term effects, multi-level governance, new public management, and the role of expertise.

Professor Rainer Friedrich from Institute for Rational Use of Energy at University of Stuttgart presented harmonized guidelines for assessment of transnational project developed in HEATCO project. Such guidelines should aid answering whether a transport project is worthwhile from an overall societal point of view and what alternative is most desirable. The guidelines provide methodology for monetizing following effects – accident risk, air pollution, noise, greenhouse gas emissions, and travel time/congestion.

The hydrogen section of the conference was opened by Mr. Reinhold Wurster from Ludwig Bölkow Systemtechnik who presented European Hydrogen Energy Roadmap developed in the project HyWays. The roadmap foresees that the commercialisation phase will start from 2015 onward and than by 2050 hydrogen and fuel cell will be dominant technologies in passenger car transport. However, there is a need for strong policy support and fast technical learning for achieving such objective.

Mr. Georges Feltz from City of Luxembourg presented experiences gained from operation of hydrogen buses in the projects CUTE and HyFLEET:CUTE. The overall positive evaluation when hydrogen buses were as reliable as new conventional buses is only affected by relatively low reliability of filling stations and spare parts delivery. Despite relatively high average consumption of hydrogen buses the operators deem them as viable solution in the medium term.

Last speaker of this section Mr. Ashok Rastogi from Becker Technologies introduced ongoing project ZERO REGIO aimed at development and demonstration of hydrogen technology in passenger cars in two demonstration sites – Rhein-Main and Lombardia. The project will among other assess competitiveness issues both from consumer and societal perspective, acceptance and regulatory matters.

The biofuel section was opened by Kes McCormick from the International Institute for Industrial Environmental Economics at Lund University who presented Bioenergy Network of Excellence. The case studies made in this project helped to identify the key barriers – economic conditions, know-how, institutional capacity and supply chain co-ordination. As the key triggers in biofuel

market development the project identifies national government commitment and excise duty exemptions or reductions.

Mrs. Juliane Muth from Volkswagen AG presented ongoing project RENEW aiming at development of future generation biofuels. The project looks at both environmental and economic performance of different production processes. Provisional results taking account of different regional biomass potential and production costs shows that on macroeconomic level second generation biofuel production can bring positive effect both in terms of economic growth and employment.

Mr. Luc Pelkmans from Flemish Institute for Technological Research (VITO) presented outcomes from recently finished project PREMIA. This project assessed effectiveness of measures to support alternative fuels on the EU level. Current experiences show that countries with low economic strength and those with low agricultural potential tend to lack in biofuel production and consumption but the actual success also depend on role of agriculture in economy, strength of lobby groups and government commitment.

In the final discussion professor Moldan pointed out that when we are thinking over different aspects of sustainable mobility we should keep in mind the whole picture. This means that we have to avoid embracing policy prescriptive approach and be open to new innovative solutions that may emerge in near future.

During the lunch break there was a press conference with professors Orecchini and Wegener, Mrs. Muth and Mr. Feltz who gave short presentations on respective projects to attending journalists.

## **1.3.3 Projects analysis**

The analysis is structured around the sustainable mobility objectives as formulated by the MOBIDAYS project consortium. Socioeconomic barriers as described in the brochure cover three relatively autonomous topics – social barriers, economic barriers and transport-energy linkages.

We start with a descriptive analysis of projects dealing with socio-economic barriers that were included in our database of RTD projects funded by EC. About one half of 46 projects mentioned in the brochure deal with mobility in cities. This heterogeneous category covers broad range of activities from urban planning to demonstration projects. The objective of 12 projects was transport and land use planning, 10 projects focused on transport pricing and/or transport infrastructure appraisal, 8 projects dealing with energy sources (mainly renewables). A primary concern of 4 projects was the accessibility issue; the demarcation between transport/land use planning and accessibility is however to large extent arbitrary. Another four projects focused on assessment tools. Public acceptance was predominantly addressed in 3 research projects. In addition, 4 demonstration projects were also covered.

Further we tried to link the projects to specific sustainable mobility objectives what is somehow challenging task as the majority of projects addresses at the same time more than one specific sustainable mobility objective. Here, we identified that some 35 projects addressed mainly or partly the objective of sustainable mobility to ensure mobility equity and accessibility. The focus of 23 projects was the options for the reduction of resource utilization (predominantly via land use planning). Some 17 projects put emphasis on limiting pollution (airborne emissions, noise etc.). Development of renewable energy sources was dominantly dealt with in 12 projects with some of them also appearing among 10 projects that were primarily focused on reduction of CO2 and other GHG emissions.

In about 10 projects a particular attention to balanced and efficient use of different transportation modes (co-modality) was given. Innovation and development of transport technologies formed a substantial part of 7 projects. According to our assessment only 6 projects put some emphasis on contribution to regional development a virtually none of projects under scrutiny touched the issue of transport safety (except for pricing/appraisal purposes).

| Acronym             | equity &<br>accessibility | safety & reliability | co-modality | energy & land use | renewable energy | emissions & noise | CO2 emissions | technology &<br>development | economic return | regional<br>development |
|---------------------|---------------------------|----------------------|-------------|-------------------|------------------|-------------------|---------------|-----------------------------|-----------------|-------------------------|
| AcceptH2            | *                         | -                    |             | -                 | *                | *                 |               |                             |                 |                         |
| AFFORD              | **                        |                      | *           | *                 |                  | *                 |               |                             |                 |                         |
| ARTISTS             | **                        |                      | *           | *                 |                  |                   |               |                             |                 |                         |
| ASI                 | *                         |                      |             |                   |                  | *                 |               |                             |                 |                         |
| ASSESS              |                           |                      |             |                   |                  |                   |               |                             |                 |                         |
| CIVITAS             |                           |                      |             |                   |                  |                   |               |                             |                 |                         |
| CIVITAS-CARAVEL     | *                         |                      | *           | *                 |                  | **                |               |                             |                 |                         |
| CIVITAS-MOBILIS     |                           |                      |             |                   | **               | **                | *             |                             |                 |                         |
| CIVITAS-SMILE       | *                         |                      | *           |                   | **               | **                |               |                             |                 |                         |
| DESIRE              | *                         |                      |             |                   |                  |                   |               |                             | *               |                         |
| ENV-e-CITY          |                           |                      |             |                   |                  | *                 |               |                             |                 |                         |
| EURoPrice           | *                         |                      |             |                   |                  |                   |               |                             | *               |                         |
| FATIMA              | *                         |                      |             |                   |                  |                   |               |                             | *               |                         |
| GRACE               | *                         |                      |             |                   |                  |                   |               |                             | *               |                         |
| HEATCO              | *                         |                      |             |                   |                  |                   |               |                             | *               |                         |
| HyWays              |                           |                      |             |                   | *                | *                 | *             | **                          |                 |                         |
| HyFLEET:CUTE        |                           |                      |             |                   |                  | **                |               | **                          |                 |                         |
| IASON               | *                         |                      |             | *                 |                  |                   |               |                             | *               |                         |
| LUTR                | *                         |                      |             | *                 |                  |                   |               |                             |                 |                         |
| MC-ICAM             | *                         |                      |             |                   |                  |                   |               |                             | *               |                         |
| NoE BIOENERGY       |                           |                      |             | *                 | **               |                   | *             | *                           |                 |                         |
| NPF Urban Transport | *                         |                      |             | *                 | *                | *                 | *             | *                           |                 | *                       |
| ΟΡΤΙΜΑ              | *                         |                      |             | *                 |                  | *                 |               |                             |                 |                         |
| PATS                | **                        |                      |             |                   |                  |                   |               |                             | *               |                         |
| PLUME               | *                         |                      |             | **                |                  |                   |               |                             |                 |                         |
| PREMIA              |                           |                      |             | *                 | **               |                   | *             |                             |                 |                         |
| PRIMA               | *                         |                      |             |                   |                  |                   |               |                             | *               |                         |
| ProBIODIESEL        |                           |                      |             |                   | *                |                   | *             |                             | *               |                         |
| PRoGRESS            | *                         |                      |             |                   |                  |                   |               | **                          |                 |                         |
| PROMPT              | **                        |                      | *           | *                 |                  |                   |               |                             |                 |                         |
| PROPOLIS            | *                         |                      |             | *                 |                  |                   |               |                             |                 |                         |
| PROSPECTS           | *                         |                      |             | *                 |                  |                   |               |                             |                 |                         |
| RECORDIT            | *                         |                      | *           |                   |                  |                   |               |                             |                 | *                       |
| REFUEL              |                           |                      |             |                   | **               |                   | *             |                             |                 | *                       |
| SAMI                | *                         |                      |             |                   |                  |                   |               |                             |                 |                         |
| SceneSusTech        | *                         |                      | *           | *                 |                  |                   |               |                             |                 |                         |
| SPARTACUS           | *                         |                      |             | *                 |                  | *                 |               |                             |                 |                         |

#### Table 3 Project linkages to sustainable mobility objectives.

| SPRITE      | * | * | *  |    |   |   |    |   |   |
|-------------|---|---|----|----|---|---|----|---|---|
| STEPs       | * |   | *  | *  |   |   |    |   | * |
| SUTRA       | * |   | *  |    | * |   |    |   |   |
| TRANSPLUS   | * |   | ** |    |   |   |    |   | * |
| TRANS-TOOLS | * | * | *  | *  | * | * |    |   | * |
| TRIAS       | * |   | *  |    |   |   | *  |   |   |
| UNITE       | * |   |    |    | * |   |    | * |   |
| VIEWLS      |   |   | *  | ** | * | * |    | * |   |
| WALCYNG     | * | * | *  |    |   |   |    |   |   |
| ZeroRegio   |   |   |    |    | * | * | ** |   |   |

Notes: \*\* – key objective of the project, \* – one of the objectives of the project

In terms of project budget the most finance intensive were large-scale demonstration projects (CUTE/HyFLEET:CUTE, CIVITAS projects), while the less finance intensive were projects dealing with transport (and land use) planning, infrastructure pricing and its acceptance (ref Table 1).

With respect to consortium balance the core team was usually formed around universities and research centres, usually cooperating with one or more consultancies. Due to our focus on socioeconomic themes in sustainable mobility it is not surprise that participation of industry is rather limited. Looking at the consortium balance in terms of representation of EU member states according to participating institution affiliation the most active countries are Germany, UK and Italy. There were also four new member states (Hungary, Poland, Romania and Czech Republic) participating in some of the projects.

| Country     | Score |
|-------------|-------|
| Germany     | 31    |
| UK          | 29    |
| Italy       | 28    |
| Netherlands | 22    |
| Austria     | 19    |
| Spain       | 18    |
| Finland     | 16    |
| Sweden      | 16    |
| France      | 15    |
| Greece      | 14    |
| Belgium     | 13    |
| Portugal    | 13    |
| Hungary     | 9     |
| Denmark     | 8     |
| Poland      | 8     |
| Romania     | 3     |
| Ireland     | 3     |
| Czech       | 3     |
| Luxembourg  | 1     |

Table 4 Consortium balance according to participating institution country

Among project coordinators those coming from UK, Germany, Sweden and Finland were slightly overrepresented.

Unlike with technically oriented projects the outputs of those dealing with socioeconomic topics are rarely tangible ones (e.g. prototype) and thus we searched for application in the form of

publications in scientific journals and books, use of guidelines, models and other tools. Similarly, due to the primary focus of projects on decision-making sphere there is rather limited scope for evaluation of project outputs' market readiness.

The remaining part of this section provides overall assessment of the projects in one common format describing both research objectives and achieved results and their exploitation.

| Acronym        | Research content                                                                                                                                                                                                                                                                                                                                                                   | Consortium<br>balance                                                                           | Achieved results                                                                                                                                                                                                                                                                                                                                                                      | Exploitation of the results                                                                                                                                                                                                                                   | Potential exploitation of results                                                                                                                                                        | market<br>readiness |  |  |  |  |
|----------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|--|--|--|--|
| A bulk of proj | Projects on social aspects related to accessibility, equity and land use planning<br>A bulk of projects dealing with social aspects of sustainability was referred to in the brochure. Majority of them were part of the Land use and transport cluster<br>(LUTR) funded in FP5 in the City of tomorrow programme. A few projects from FP4 are also included (WALCYNG, SPARTACUS). |                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                               |                                                                                                                                                                                          |                     |  |  |  |  |
| SPARTACUS      | Develop and apply a<br>comprehensive analytical<br>modelling framework in order<br>to formulate and evaluate long<br>term strategies for sustainable<br>urban development,<br>especially in Europe                                                                                                                                                                                 | FI, ES, DE, UK,<br>IT;<br>consultancies,<br>universities                                        | Strategic urban land-<br>use and transport<br>planning system<br>based on MERPLAN<br>model and using GIS<br>as a platform to<br>produce<br>environmental, social<br>and economic urban<br>sustainability<br>indicators that can be<br>used in assessing<br>policy options and<br>when searching for<br>new and effective<br>ways to attainability,<br>decision support tool<br>USE-IT | The planning system<br>has been used for<br>assessing alternative<br>strategies in Helsinki,<br>Naples and Bilbao; book<br>chapter in Planning<br>Support Systems in<br>Practice (Springer,<br>2002), journal articles<br>(Transportation<br>Research Record) | Strategic urban land-use<br>and transport planning<br>system                                                                                                                             | n.a.                |  |  |  |  |
| WALCYNG        | Develop guidelines for<br>enhancing walking and<br>cycling, in order to replace<br>shorter car trips and to make<br>the walking and cycling<br>modes safer                                                                                                                                                                                                                         | SE, AT, ES, FI,<br>NO, DE, IT, NL;<br>universities,<br>research<br>institutes,<br>consultancies | Inventory report on<br>existing solutions for<br>pedestrians and<br>cyclists, WALCYNG<br>quality scheme, a<br>quality assessment<br>scheme for<br>improvement of<br>walking and cycling<br>facilities                                                                                                                                                                                 | Likely wide, but no<br>published academic<br>papers were found                                                                                                                                                                                                | Guidelines for planning,<br>evaluation of measures<br>for vulnerable road users<br>and for lobbying                                                                                      | n.a.                |  |  |  |  |
| PROPOLIS       | Research, develop and test<br>integrated land use and<br>transport policies, tools and<br>comprehensive assessment<br>methodologies in order to<br>define sustainable long-term<br>urban strategies and to<br>demonstrate their effects in<br>European cities                                                                                                                      | FI, UK, DE, BE,<br>ES, IT;<br>consultancies,<br>universities                                    | Software tools and<br>the interfaces -<br>enhanced urban land<br>use and transport<br>models and new GIS<br>and Internet based<br>modules, decision<br>support tool                                                                                                                                                                                                                   | Operational PROPOLIS<br>system has been set in<br>Helsinki, Dortmund,<br>Vicenza, Naples, Bilbao,<br>Inverness and Brussels,<br>journal articles<br>(International Journal of<br>Urban Sciences)                                                              | Software tools with<br>additional urban<br>sustainability indicators                                                                                                                     | n.a.                |  |  |  |  |
| PROSPECTS      | Provide cities with the<br>guidance which they need in<br>order to generate optimal land<br>use and transport strategies<br>to meet the challenge of<br>sustainability in their particular<br>circumstances.                                                                                                                                                                       | UK, AT, FI, SE,<br>UK, NO, ES;<br>universities,<br>consultancies                                | Decision-Makers'<br>Guidebook outlining<br>the approach to<br>decision-making, the<br>policy options, and<br>the support tools<br>available,<br>Methodological<br>Guidebook provides<br>more extensive<br>advice on the support<br>tools for evaluation,<br>forecasting and<br>analysis, Policy<br>Guidebook                                                                          | Journal articles (EJTIR)                                                                                                                                                                                                                                      | Dynamic land-<br>use/transport model SPM<br>and<br>evaluation/optimization<br>procedure to assess the<br>effects of complex<br>strategies formed by<br>policy instrument<br>combinations | n.a.                |  |  |  |  |

Table 5 Analysis: Socio-economic projects

| PROMPT    | Concrete objective is to<br>develop new innovative tools<br>and generic solutions to<br>promote walking in cities for<br>city actors involved in urban<br>planning and design as well<br>as decision-making                                                                                                                                       | FI, FR, IT, NO,<br>CH, BE;<br>universities,<br>research<br>institutes                                             | Created a planning<br>framework to<br>encourage walking in<br>cities including a<br>Guidebook.<br>Clustering of<br>problems (scarce<br>space, interference<br>with motorists, lack of<br>outdoor equipment<br>etc.) and families of<br>solutions (dedicated<br>policies, improved<br>public transport,<br>developing green<br>nodes etc.).                                   | publication on LUTR<br>cluster projects (Mashall<br>S., Banister D. (eds.)<br>Land Use and<br>Transport: European<br>Research Towards<br>Integrated Policies,<br>Elsevier, 2007)                                                         | guidebook                                                                                                                                                                                                          | n.a.   |
|-----------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|
| TRANSPLUS | Analysis of best practice and<br>planning tools aimed at<br>reducing private car use,<br>fostering public and non<br>motorised transport modes                                                                                                                                                                                                    | IT, UK, AT, BE,<br>DE, NL, FR,<br>SK, MT, PL,<br>RO;<br>universities,<br>research<br>institutes,<br>consultancies | More than 20 cities<br>were analyzed in<br>depth about their<br>integrated transport<br>and land-use<br>monitoring activities,<br>a set of indicators to<br>evaluate combined<br>land use and<br>transport policies,<br>good practices have<br>been identified and<br>fed into Guidelines:<br>achieving sustainable<br>transport and land<br>use with integrated<br>policies | Publication on LUTR<br>cluster projects (Mashall<br>S., Banister D. (eds.)<br>Land Use and<br>Transport: European<br>Research Towards<br>Integrated Policies,<br>Elsevier, 2007), journal<br>article (International<br>Planning Studies) | Use of the Guidelines                                                                                                                                                                                              | n.a.   |
| SUTRA     | Develop and apply an<br>indicator based approach<br>compatible with Agenda 21<br>and common indicators for<br>urban sustainability for a<br>baseline analysis, ranking and<br>benchmarking, use traffic<br>equilibrium modelling, air<br>quality modelling, economic<br>analysis and energy systems<br>analysis and modelling for<br>case studies | AT, PT, GR,<br>PL, AR, DE, IT,<br>IL; universities,<br>industry                                                   | Better information<br>basis, planning and<br>decision support tools<br>designed for the<br>direct use by city<br>administrations,<br>integrated system<br>VADIS for the<br>simulation of urban air<br>pollution in city<br>centres.                                                                                                                                          | Publication on LUTR<br>cluster projects (Mashall<br>S., Banister D. (eds.)<br>Land Use and<br>Transport: European<br>Research Towards<br>Integrated Policies,<br>Elsevier, 2007), journal<br>articles (Cybernetics and<br>Systems)       | Use of modelling tools<br>case studies in Buenos<br>Aires, Gdansk, Genoa,<br>Geneva, Lisbon, Tel Aviv,<br>and Thessaloniki                                                                                         | likely |
| PLUME     | Addressing issues of Land-<br>Use and Mobility Planning -<br>User Needs and Barriers to<br>Implementation, Identification<br>and Synthesis of Solutions,<br>benchmarking                                                                                                                                                                          | AT, ES, GR,<br>NL, PT, SE,<br>UK, IE, RO, PL;<br>universities,<br>research<br>institutes,<br>consultancies        | Set of indicators for<br>benchmarking of<br>integrated processes<br>in urban and mobility<br>planning including<br>implementation of<br>Aalborg Charter<br>commitment.                                                                                                                                                                                                       | Publication on LUTR<br>cluster projects (Mashall<br>S., Banister D. (eds.)<br>Land Use and<br>Transport: European<br>Research Towards<br>Integrated Policies,<br>Elsevier, 2007)                                                         | Building local sustainability                                                                                                                                                                                      | n.a.   |
| ARTISTS   | The project aims at<br>encouraging new ways of<br>thinking about how arterial<br>streets are conceptualised,<br>designed and managed, as<br>part of the overall street<br>system. This requires a<br>rethinking of how the various<br>functions of the arterial street<br>are reconciled a                                                        | SE, DK, UK,<br>GR, ES, PT,<br>HU;<br>universities,<br>municipalities,<br>consultancies                            | Comparative<br>assessment of<br>European arterial<br>streets, guidance for<br>planners and decision<br>makers when<br>reconstructing arterial<br>streets. Compiled a<br>set of pilot indicators<br>for assessing street<br>'performance' as a<br>classification tool. 40<br>case studies in 9<br>countries                                                                   | Belfast (?), publication<br>on LUTR cluster projects<br>(Mashall S., Banister D.<br>(eds.) Land Use and<br>Transport: European<br>Research Towards<br>Integrated Policies,<br>Elsevier, 2007)                                            | Guidelines for re-<br>designing of arterial<br>streets to improve the<br>physical environment of<br>the corridors while<br>contributing to the<br>implementation of more<br>sustainable urban<br>transport systems | n.a.   |
| ASI       | Selection of five City-of-<br>Tomorrow implementation-<br>sites in different parts of<br>Europe and to find out how<br>Quality of Life (QoL) aspects<br>are assessed and taken care<br>in these areas. To develop a<br>toolbox to assess the LQ<br>effects of proposed and<br>implemented policies and                                            | AT, IT, CZ, NL;<br>universities and<br>research<br>institutes                                                     | Toolbox for the<br>assessment of QoL in<br>connection with urban<br>planning, transport<br>and mobility;<br>relational databank<br>and guidelines for<br>practitioners                                                                                                                                                                                                       | Publication on LUTR<br>cluster projects (Mashall<br>S., Banister D. (eds.)<br>Land Use and<br>Transport: European<br>Research Towards<br>Integrated Policies,<br>Elsevier, 2007)                                                         | Urban and transport<br>planning                                                                                                                                                                                    | n.a.   |

|                                 | measures was developed and<br>tested based upon the results<br>of the evaluation                                                                                                                                                                                                                              |                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                  |                                                                                                                                                                                                                                       |                                                    |
|---------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------|
|                                 | Projec                                                                                                                                                                                                                                                                                                        | ts on asses                                                                         | sment related t                                                                                                                                                                                                                                                                                                                                                                                                 | o transport polici                                                                                                                                                                                               | es                                                                                                                                                                                                                                    |                                                    |
| The relatively and integrated a | heterogeneous category of proje<br>issessment. We cover two projec                                                                                                                                                                                                                                            | cts dealing with ass<br>ts from FP4 and ar<br>T                                     | sessment includes projec<br>nother two from FP5, thre<br>ransport Policy White Pa                                                                                                                                                                                                                                                                                                                               | t developing modelling and<br>e projects from FP6 and a l<br>per.                                                                                                                                                | benchmarking tools, produci<br>DG-TREN funded assessme                                                                                                                                                                                | ng scenarios<br>nt of European                     |
| SAMI                            | Define and develop decision<br>models (presented in a report<br>and an interactive computer<br>program) which can be used<br>in relation to the interactions<br>between policy<br>instruments/measures and<br>identified CTP targets                                                                          | FI, UK, PT, AT,<br>NL; research<br>institutes,<br>universities,<br>industry         | Set of core tools<br>including multicriteria,<br>quantitative and<br>qualitative evaluation<br>software package<br>SAMIsoft.                                                                                                                                                                                                                                                                                    | Software package<br>SAMIsoft has been used<br>several times to support<br>policy decisions in<br>Europe; publications<br>(e.g. Trans Res D)                                                                      | Software package<br>SAMIsoft                                                                                                                                                                                                          | n.a.                                               |
| SceneSusTec<br>h                | The project explores the<br>relationship between urban<br>citizenship and urban<br>transport in working out series<br>of parallel case studies of four<br>medium sized European cities<br>with developing of scenarios<br>showing the social<br>consequences of alternative<br>forms of transport in its city | IE, GR, IT, FI;<br>universities,<br>research<br>institutes                          | Scenarios for<br>transport policy for 4<br>case study areas<br>(Athens, Bologna,<br>Dublin, Helsinki). The<br>project finds that<br>there is only weak<br>evidence that<br>reducing car usage<br>contributes to social<br>cohesion, but<br>stronger evidence<br>that reducing car<br>dependency<br>contributes to social<br>inclusion                                                                           | Journal articles<br>(International Journal of<br>Urban and Regional<br>Research, Theory<br>Culture Society,<br>European Societies)                                                                               | In designing transport policy                                                                                                                                                                                                         | n.a.                                               |
| IASON                           | To improve existing<br>assessment procedures by<br>building a practical<br>assessment framework for<br>integrative evaluation,<br>reviewing existing<br>methodologies of assessment<br>and identifying issues that are<br>critical for a successful<br>application.                                           | NL, UK, DE,<br>HU, FR;<br>universities,<br>research<br>institutes,<br>consultancies | Development of two<br>assessment model -<br>SASI (quasi<br>production function<br>model) and<br>CGEurope (general<br>equilibrium model) for<br>transport project<br>appraisal                                                                                                                                                                                                                                   | Network effects and total<br>economic impact in<br>transport appraisal,<br>James J. Laird, John<br>Nellthorp and Peter J.<br>Mackie, Transport<br>Policy, Volume 12, Issue<br>6, November 2005,<br>Pages 537-544 | Book chapter Wolfgang<br>Schade, Wemer<br>Rothengatter: Research<br>Issues in Transport<br>Economics: Dynamics,<br>Integration, and Indirect<br>Effects, in: Applied<br>Research in<br>Environmental<br>Economics, Physica-<br>Verlag | Harmonised<br>IO dataset<br>for EU18<br>and CEE-13 |
| SPRITE                          | Identify measures to allow<br>economic growth to continue<br>while minimizing the<br>environmental and other<br>negative impacts from<br>transport; exploring the<br>concept of transport intensity<br>using questionnaire and focus<br>groups                                                                | UK, DE, IT;<br>universities,<br>consultancies                                       | Based on detailed<br>survey of over 100<br>experts and series of<br>panel discussions the<br>project identified 7<br>most promising<br>measures to influence<br>transport intensity,<br>these relate to<br>efficiency, logistics<br>and transport<br>innovation; pricing<br>policies; command<br>and/or liberalization<br>policies; changes in<br>the economy; and the<br>emergence of<br>integrated strategies | Journal articles (e.g.<br>European Journal of<br>Transport and<br>Infrastructure Research)                                                                                                                       | In sustainable transport policies                                                                                                                                                                                                     | n.a.                                               |

| TRANS-<br>TOOLS | Produce a European transport<br>network model covering both<br>passengers and freight, as<br>well as intermodal transport,<br>which overcomes the<br>shortcomings of current<br>European transport network<br>models.                                                                                                                                                                                                                                                   | NL, IT, DE, DK,<br>BE; universities,<br>research<br>institutes,<br>consultancies                               | European transport<br>network model that<br>covers both<br>passenger and freight<br>transport with<br>interactions to<br>economic and<br>impacts models. Built<br>around ArcGIS<br>framework enabling<br>modelling on network<br>level                                                                                                                      | n.a.                                                                                                                                                                                                          | Trans-Tools model may<br>be used for assessment<br>of construction and<br>improvement of<br>infrastructure,<br>implementation of<br>charging systém or<br>changes in transport<br>costs (e.g. tax or price<br>increase) | Yes            |
|-----------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|
| STEPs           | Develop, compare and assess<br>possible scenarios for the<br>transport system and energy<br>supply of the future taking into<br>account the state of the art of<br>relevant research and such<br>criteria as the autonomy and<br>security of energy supply,<br>effects on the environment<br>and economic, technical and<br>industrial viability including the<br>impact of potential cost<br>internalization and the<br>interactions between transport<br>and land use | NL, UK, DE, IT,<br>ES, PT, BE;<br>universities,<br>research<br>institutes,<br>consultancies                    | Analysis of the<br>political, economic,<br>social and<br>technological (PEST)<br>drivers that are<br>prevalent in spatial<br>development, energy<br>use, freight transport<br>and passenger<br>transport, future<br>trends in freight and<br>passenger transport,<br>identification of the<br>main indicators for<br>quantifying energy<br>use in transport | Journal articles<br>(Engineering<br>Sustainability, Networks<br>and Spatial Economics)                                                                                                                        |                                                                                                                                                                                                                         |                |
| ASSESS          | Preparatory works on the mid-<br>term review of the White<br>Paper on the European<br>transport policy                                                                                                                                                                                                                                                                                                                                                                  | BE, PL, NL, IT,<br>UK, DE, TR;<br>universities,<br>consultancies<br>and research<br>institutes                 | In-depth review of<br>European Transport<br>Policy                                                                                                                                                                                                                                                                                                          | Served as background<br>document for mid-term<br>review of the White<br>Paper on the European<br>transport policy                                                                                             | n.a.                                                                                                                                                                                                                    | n.a.           |
| TRIAS           | Integrated assessment of<br>transport technologies and<br>transport energy supply<br>together with economic,<br>environmental and social<br>impacts. Applied models will<br>act at European scale (EU25)<br>and will include: POLES for<br>energy modelling, ASTRA for<br>transport modelling and<br>integrated sustainable<br>assessment, VACLAV for<br>detailed transport modelling<br>and Regio-SUSTAIN for small<br>scale analysis of<br>environmental impacts      | DE, IT, BE;<br>research<br>institutes,<br>universities                                                         | Long-term outlook for<br>global transport and<br>energy demand,<br>scenario-based<br>pathways for<br>transport, technology<br>and energy to<br>promote sustainability<br>in the EU.                                                                                                                                                                         | n.a.                                                                                                                                                                                                          | Transport and land use planning                                                                                                                                                                                         | n.a.           |
| There were 5 pr | Projects o<br>ojects included in our analysis for                                                                                                                                                                                                                                                                                                                                                                                                                       | n external c                                                                                                   | costs, appraisal                                                                                                                                                                                                                                                                                                                                            | and transport acc                                                                                                                                                                                             | counts<br>Isport accounts – 3 of them in                                                                                                                                                                                | n FP5 and 2 in |
| MC-ICAM         | Defining optimal (full, first-<br>best) end states in the short,<br>medium and long term<br>compared to current situations<br>– for all main passenger and<br>freight modes, covering both<br>urban and interurban issues,<br>and taking account of relevant<br>technological, institutional and<br>national contexts                                                                                                                                                   | UK, FI, NL, IT,<br>NO, GR, DE,<br>BE, HU, SV, IL;<br>universities,<br>research<br>institutes,<br>consultancies | Impacts of pricing<br>system as a function<br>of its scope, optimal<br>prices in phased<br>implementation,<br>impacts of<br>differentiation,<br>impacts of the use of<br>revenues, long-term<br>impacts through land<br>use                                                                                                                                 | Journal articles<br>(Transport Policy), book<br>Measuring the Marginal<br>Social Cost of Transport<br>(Elsevier, 2005), chapter<br>in Road Pricing, the<br>Economy and the<br>Environment (Springer,<br>2008) | Options for achieving co-<br>modality                                                                                                                                                                                   | n.a.           |

| UNITE           | Unification of accounts and<br>marginal costs for Transport<br>Efficiency-developing pilot<br>transport accounts for all<br>modes, for the EU15 and<br>additional countries; providing<br>a comprehensive set of<br>marginal cost estimates<br>relevant to transport contexts<br>around EU                                     | UK, BE, DE, IT,<br>FI, SE, AT, NL,<br>ES, FR, CH,<br>PT, GR;<br>universities,<br>research<br>institutes,<br>consultancies,<br>industry | Empirical estimates of<br>marginal costs for key<br>cost, benefit and<br>revenue categories,<br>various contexts<br>around Europe, a<br>wide range of<br>passenger and freight<br>modes, guidance on<br>future approaches to<br>the development of<br>transport accounts,<br>pilot transport<br>accounts for 18<br>countries                                      | Further elaborated in<br>GRACE project, served<br>as input for EC<br>Handbook on estimation<br>of external cost in the<br>transport sector (2008)                                                                                      | Guidance on transferring<br>marginal cost estimates<br>to new contexts, update<br>of national accounts                                                                                                                                                        | n.a. |  |  |
|-----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|--|--|
| RECORDIT        | Design a comprehensive<br>methodology for the<br>calculation of real (internal<br>+external) costs of intermodal<br>freight transport, analyze<br>current charging and taxation<br>systems to understand price<br>formation mechanisms,<br>analyze technical and<br>organizational cost reduction<br>options                   | IT, UK, GR, DE,<br>FR, NL, DK;<br>research<br>institutes,<br>universities                                                              | Three corridors<br>analysed - Patras -<br>Brindisi - Milano -<br>Munich - Hamburg<br>and Gothenburg, tri-<br>modal transport chain<br>between Genova -<br>Basel - Rotterdam<br>and Manchester,<br>door-to-door<br>intermodal chain<br>along the corridor<br>Barcelona - Lyon -<br>Torino - Verona -<br>Budapest and<br>Warsaw                                     | Journal articles (e.g.<br>European Journal of<br>Transport and<br>Infrastructure<br>Research), served as<br>input for EC Handbook<br>on estimation of external<br>cost in the transport<br>sector (2008)                               | Interactive software<br>enabling to estimate the<br>costs. identified priority<br>areas where intermodal<br>costs could be reduced<br>through a better<br>organization of services<br>and a more effective and<br>systematic use of efficient<br>technologies | n.a. |  |  |
| HEATCO          | Develop widely accepted and<br>harmonized set of guidelines<br>for the strategic environmental<br>and economic impact<br>assessment of EU transport<br>projects and policies                                                                                                                                                   | DE, UK, HU, IT,<br>NL, DK, CH,<br>NO, ES, GR,<br>CZ, AT,SE;<br>universities,<br>consultancies,<br>industry                             | Review of current<br>practices, guidelines<br>for assessment of<br>transport projects,<br>monetary estimates<br>for key impacts -<br>noise annoyance,<br>value of travel time<br>savings                                                                                                                                                                          | Endorsed by DG REGIO<br>in Guidance on<br>methodology for CBA for<br>programming period<br>2007-2013, input for EC<br>Handbook on estimation<br>of external cost in the<br>transport sector (2008)                                     | Assessment of large transport projects                                                                                                                                                                                                                        | n.a. |  |  |
| GRACE           | Undertake new case study<br>research to address gaps in<br>the existing level of<br>knowledge of marginal social<br>costs for road, rail, air and<br>water borne transport develop<br>and refine the methods of<br>using transport accounts to<br>monitor the implementation of<br>transport pricing reform                    | UK, DE, PL, IT,<br>BE, HU, ES,<br>SE, CH;<br>universities,<br>consultancies,<br>research<br>institutes                                 | Marginal cost case<br>studies for road and<br>rail transport, air and<br>water transport.<br>Guidance on effective<br>trade off between<br>pricing systems that<br>give appropriate<br>incentives by<br>portraying variations<br>in marginal social cost<br>in time and space in<br>detail and pricing<br>systems that are<br>easily understood and<br>acted upon | Input for EC Handbook<br>on estimation of external<br>cost in the transport<br>sector (2008)                                                                                                                                           | For pricing policy                                                                                                                                                                                                                                            | n.a. |  |  |
| We have referre | Projects on pricing and its acceptance<br>We have referred to 8 projects dealing with transport pricing and its acceptance – 5 of them were funded in FP4, 2 in FP5 and one was a part of DG-TREN SAVE<br>programme.                                                                                                           |                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                               |      |  |  |
| AFFORD          | The project aims to show that<br>marginal cost pricing in<br>combination with other fiscal<br>and financial measures can in<br>practice effectively internalize<br>transport externalities such as<br>congestion and environmental<br>impacts, and can regulate<br>demand in a way that is<br>socially efficient and equitable | FI, UK, GR, IT,<br>DE, ES, NO;<br>universities +<br>consultancies                                                                      | Empirical analysis of<br>public acceptability of<br>pricing strategies<br>shows that as<br>expected current<br>acceptability is rather<br>low. The factors that<br>influence degree of<br>acceptability the most<br>were social norms,<br>expected personal<br>outcome and<br>perceived<br>effectiveness                                                          | Journal articles (Schade<br>J, Schlag B:<br>Acceptability of urban<br>transport pricing<br>strategies,<br>Transportation Research<br>Part F: Traffic<br>Psychology and<br>Behaviour, Volume 6,<br>Issue 1, March 2003,<br>Pages 45-61) | e.g. in designing demand management schemes                                                                                                                                                                                                                   | n.a. |  |  |

| PRIMA  | Assessing the acceptance of<br>road pricing schemes in 8<br>cities, evaluate different<br>scheme designs, develop<br>guidelines for removing<br>barriers to implementation<br>using three theoretical<br>approaches - decision support<br>theory, public choice theory<br>and policy games.                                                                                                                                                                                                                                                                                                                   | SE, NL, CH,<br>FR, ES;<br>consultancies,<br>research<br>institutes,<br>universities                | The project provides<br>a descriptive overview<br>of different obstacles<br>affecting the design of<br>optimal road pricing<br>scheme and outlines<br>decision-making<br>processes in case<br>study cities. The<br>project concludes that<br>public attitudes<br>towards road pricing<br>is rather negative - no<br>urban pricing scheme<br>under investigation<br>finds even 30%<br>acceptance                        | Disseminated in<br>IMPRINT-EUROPE,<br>used in DESIRE and<br>quoted in Viegas JM:<br>Interurban road charging<br>for trucks in Europe,<br>Research in<br>Transportation<br>Economics Vol. 11,<br>Elsevier, 2005 | In designing urban pricing schemes                                                                                                                                                                                                    | n.a. |
|--------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
| PATS   | Identify the reasons behind<br>the attitude of<br>acceptance/non-acceptance<br>of transport pricing, and the<br>arguments that support those<br>standpoints; Find the means<br>and measures to increase its<br>acceptability; Identify the legal<br>and political barriers to the<br>implementation of pricing<br>schemes, analyzing the<br>distributional impacts, and<br>designing acceptable pricing<br>schemes and policy<br>packages, taking account of<br>efficiency and fairness issues                                                                                                                | PT, UK, SE,<br>AT, NL, CH,<br>FR, DE;<br>universities,<br>research<br>institutes,<br>consultancies | The project concludes<br>that the acceptability<br>of transport pricing<br>may be more<br>dependent on<br>practical institutional<br>issues, convictions<br>and beliefs of the<br>stakeholders than on<br>its economic<br>foundation.                                                                                                                                                                                  | Journal articles (Journal<br>of Transport Economics<br>and Policy), chapters in<br>Transport Projects,<br>Programmes and<br>Policies - Evaluation<br>Needs and Capabilities<br>(Ashgate, 2003)                 | Socio-economic<br>principles for price<br>acceptability, design<br>acceptable solutions for<br>pricing packages,<br>recommendations for<br>Transport Pricing<br>Strategies                                                            | n.a. |
| ΟΡΤΙΜΑ | Optimisation of policies for<br>transport integration in<br>metropolitan areas                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | UK, IT, AT, FI,<br>NO;<br>universities,<br>public transport<br>operators                           | Project defines<br>combinations of policy<br>measures to achieve<br>optimum economic<br>benefit in urban<br>transport system<br>using modelling<br>methods and coupled<br>with questionnaire to<br>assess the feasibility<br>and acceptability of<br>optimum strategies.<br>The most frequent<br>concerns relate to<br>financial feasibility<br>and also to existing<br>legislative barriers<br>(e.g. to road pricing) | Journal articles<br>(Transportation,<br>Transport Policy)                                                                                                                                                      | Provides relative benefit<br>(over the nine case study<br>cities) of each measure<br>with respect to the two<br>objective functions used -<br>Economic Efficiency<br>Function (EEE) and<br>Sustainability Objective<br>Function (SOF) | n.a. |
| FATIMA | To identify the benefits to the<br>private sector of optimal urban<br>transport strategies, to<br>determine the differences<br>between strategies optimized<br>using public funds and those<br>optimized within the<br>constraints imposed by<br>private funding initiatives, to to<br>propose mechanisms by<br>which private sector funding<br>can be provided so as to<br>achieve appropriately optimal<br>transport strategies while<br>maintaining quality of<br>operation, and to use the<br>results to provide more<br>general guidance on the role<br>of private sector funding for<br>urban transport | UK, FI, AT, IT;<br>universities,<br>research<br>institutes                                         | Recommendations for<br>the design of optimal<br>transport strategies,<br>for the involvement of<br>the private sector,<br>methodological<br>recommendations<br>and<br>recommendations for<br>further research                                                                                                                                                                                                          | Journal articles<br>(Transportation,<br>Transport Policy),<br>conference<br>presentations (e.g.<br>CORP 2001)                                                                                                  | For designing transport strategies                                                                                                                                                                                                    | n.a. |

|                |                                                                                                                                                                                                                                                                                                   |                                                                                                                                  | The project highlights                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                        |                                                               |              |
|----------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------|--------------|
| DESIRE         | Assessing distance based<br>inter-urban road pricing in<br>Europe, focusing on heavy<br>vehicles and considering<br>future extensions towards<br>other type of vehicles, provide<br>guidelines for the design of<br>those schemes and ways to<br>overcome its implementation<br>difficulties      | PT, UK, AT,<br>CH, DE, BR,<br>BE, HU, NL FR;<br>universities,<br>consultancies,<br>research<br>institutes,<br>industry           | the need to move<br>towards variabilization<br>of motoring costs -<br>larger part of cost<br>should be linked to<br>actual use. Estimates<br>of impacts of<br>application of road<br>tolls - on freight<br>transport (no modal<br>shift is envisaged),<br>GDP (majority of<br>additional costs<br>absorbed in the<br>sector), environment<br>and safety<br>(restructuring of<br>vehicle fleet).                              | Published as Viegas JM<br>"Interurban road<br>charging for trucks in<br>Europe", Research in<br>Transportation<br>Economics Vol. 11,<br>Elsevier, 2005 | Introducing of pricing scheme                                 | n.a.         |
| PRoGRESS       | Demonstrate and evaluate the<br>effectiveness and acceptance<br>of integrated urban transport<br>pricing schemes to achieve<br>transport goals and raise<br>revenue                                                                                                                               | UK, IT, SE, NO,<br>FI, DK;<br>municipalities,<br>uni, research<br>institutes,<br>consultancies                                   | One operational road<br>pricing scheme, five<br>demonstration<br>schemes to simulate<br>charging systems<br>(initially three of them<br>had to be fully<br>operational systems)<br>and a modelling<br>study. In about 60<br>lessons learned for<br>consultation and<br>information, legal and<br>legal and institutional<br>issues, technology<br>and transactions,<br>enforcement and user<br>acceptance were<br>elaborated | Journal articles<br>(Transport Reviews,<br>Journal of Transport<br>Geography, Mobilities)                                                              | Designing and<br>implementation of<br>electronic toll systems | n.a.         |
| EURoPrice      | The project focused on the<br>following European capital<br>cities as test sites: Dublin,<br>London, Athens and Budapest<br>where road pricing pilot-<br>actions and associated<br>modelling will be designed<br>and implemented except in<br>Budapest where modelling<br>alone will be conducted | ie, gr, uk, hu                                                                                                                   | Road pricing pilot-<br>actions and/or pricing<br>effects modelling in<br>Dublin, London,<br>Athens and Budapest                                                                                                                                                                                                                                                                                                              | Europrice network<br>(Phase II working until<br>2002) -<br>http://www.europrice-<br>network.org/                                                       | For designing urban<br>pricing scheme                         | n.a.         |
|                | Projects or                                                                                                                                                                                                                                                                                       | n socioecon                                                                                                                      | omic aspects o                                                                                                                                                                                                                                                                                                                                                                                                               | f biofuels and hy                                                                                                                                      | drogen                                                        |              |
| A selection of | research projects focusing on soc<br>(HyWays,                                                                                                                                                                                                                                                     | xoeconomic aspec<br>NoeBioenergy, an                                                                                             | ts of biofuels and hydrogod PREMIA), and two Inte                                                                                                                                                                                                                                                                                                                                                                            | en include two FP5 projects<br>Iligent Energy/Alterner proje                                                                                           | (VIEWLS and AcceptH2), 3<br>ects.                             | FP6 projects |
| VIEWLS         | Collect and analyze data,<br>potential, scenarios, markets<br>and trade of biofuels                                                                                                                                                                                                               | NL, GR, DE,<br>SE, HU, CZ,<br>HU, FR, AT,<br>DK, ES, RO,<br>CA, US;<br>universities,<br>research<br>institutes,<br>consultancies | Provides estimates of<br>GHG reduction<br>potentials from<br>biofuels - for current<br>biofuels in range of<br>30-50% for second<br>generation in range of<br>50-90%. Given the<br>high prices of oil<br>substantial amount of<br>biomass may be<br>produced in<br>competitive way in<br>Europe without food<br>and wood production<br>if Eastern European<br>agriculture undergoes<br>re-structuring                        | Further elaborated in REFUEL project                                                                                                                   | BioTrans model                                                | n.a.         |

| AcceptH2         | To assess public acceptance<br>of hydrogen transport<br>technologies and economic<br>preferences towards the<br>potential and actual use of<br>hydrogen buses by<br>conducting 'before' and 'after'<br>economic valuation studies in<br>London, Berlin, Luxemburg,<br>Perth and Oakland.   | UK, DE (and<br>non-EU);<br>universities and<br>consultancies                                                 | A questionnaire<br>survey carried out in<br>four cities – Berlin,<br>London, Luxembourg,<br>and Perth (Australia)<br>revealed on the one<br>hand a generally<br>unconditional support<br>to large scale<br>introduction of<br>hydrogen buses,<br>which was, on the<br>other hand, not<br>apparent in an<br>increase in<br>willingness to pay of<br>extra bus fares – on<br>average only $0.35 \in$<br>per bus user | Journal articles (Journal<br>of H2 Energy, Energy<br>Policy), conference<br>presentations (Hydrogen<br>& Fuel Cell Futures<br>2004, European<br>Hydrogen Energy<br>Conference 2005, 15th<br>World Hydrogen Energy<br>Conference, 13th<br>EAERE Conference)        | Guidelines for operators<br>'How to run effective<br>hydrogen demonstration<br>projects' | n.a  |
|------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|------|
| HyWays           | An integrated project to<br>develop the European<br>Hydrogen Energy Roadmap                                                                                                                                                                                                                | DE, UK, NO,<br>ES, NL, IT, FR,<br>PT; universities,<br>research<br>institutes,<br>consultancies,<br>industry | European Hydrogen<br>Energy Roadmap and<br>recommendations for<br>stakeholders<br>concerning realistic<br>regional options to<br>build the hydrogen<br>energy infrastructure.<br>The proactive<br>introducing of<br>hydrogen into the<br>energy system would<br>reduce total oil<br>consumption by the<br>road transportation<br>sector by 40%<br>between 2008 and<br>2050                                         | Journal articles<br>(International Journal of<br>Hydrogen Energy),<br>conference<br>presentations (IEA<br>workshop, International<br>Conference on the<br>Sustainable Automobile)                                                                                 | In policy-making                                                                         | n.a. |
| PREMIA           | Assessment of effectiveness<br>of support programmes to<br>facilitate and secure market<br>introduction of alternative<br>fuels in the EU                                                                                                                                                  | BE, ES, GR, FI;<br>research<br>institutes                                                                    | Identification of<br>drivers to<br>development of<br>biofuel market -<br>dominantly by country<br>specific conditions<br>including the strength<br>of agricultural sector,<br>industry and lobbies.<br>Provide detailed<br>assessment of<br>measures taken by<br>eight member states:<br>Austria, Czech<br>Republic, France,<br>Germany, Poland,<br>Spain, Sweden and<br>the United Kingdom                        | Interim results used as<br>input for EC Biofuels<br>Progress Report                                                                                                                                                                                               | In setting biofuel policies                                                              | n.a. |
| NoE<br>BIOENERGY | Technology development and<br>implementation, policy actions<br>and market strategies in the<br>field of bioenergy. cover all<br>processes, components and<br>methods necessary for<br>establishing successful<br>"bioenergy chains" to produce<br>heat, electricity and biofuels<br>for t | FI, SE, AT, PL,<br>DE, FR, NL;<br>universities                                                               | The case studies<br>expose four points<br>about barriers to<br>bioenergy. First, there<br>are no absolute<br>barriers to realising<br>the potentials of<br>bioenergy in the EU.<br>Second, it is non-<br>technical challenges<br>that are hindering<br>bioenergy rather than<br>technical issues.                                                                                                                  | Kes McCormick, Tomas<br>Kåberger: Key barriers<br>for bioenergy in Europe:<br>Economic conditions,<br>know-how and<br>institutional capacity,<br>and supply chain co-<br>ordination, Biomass and<br>Bioenergy, Volume 31,<br>Issue 7, July 2007,<br>Pages 443-452 | Development of efficient<br>policies for renewable<br>energy development                 | n.a. |
| ProBIODIESE<br>L | Promote biodiesel as a<br>competitive and commercial<br>product, including assessment<br>of social acceptability in<br>Germany, France and Spain                                                                                                                                           | ES, AT, DE,<br>GR;<br>consultancies,<br>industry,<br>universities                                            | Ongoing                                                                                                                                                                                                                                                                                                                                                                                                            | n.a.                                                                                                                                                                                                                                                              | n.a.                                                                                     | n.a. |

## 1.4 European research on vehicles for sustainable mobility

## **1.4.1** Overview of the considered projects

This section of the London conference dealt with sustainable vehicles. Starting off with the database compiled by the MOBIDAYS consortium, the IST further worked to find projects connected with the vehicle innovation and individualized the 170 projects reported in the MOBIDAYS brochure on vehicle projects classified in the following way:

- Conventional Internal Combustion Engines
  - o Diesel and Gasoline
  - Alternative Fuels
- New Combustion Modes
- Hybrid Electric Vehicles
- Fuel Cell Vehicles
  - o 5.1 Fuel cell stacks and related technologies
  - 5.2 Integration and applications to road vehicles
- New Materials and Manufacturing Processes
- Vehicle noise
- Vehicle Safety
- New Vehicle Design Concepts Urban Mobility

The conference brought together researchers working on various in-vehicle technologies aimed at achieving sustainability in transport. Key outcomes of a selection of EC-funded projects were presented by the invited speakers, as the way to stimulate the discussion among all participants on what these projects have achieved, what their practical applications have been, what their pitfalls are, and what priorities should be set for future research and demonstration activities in the EU.

The emphasis has been put on advances of powertrain technologies towards zero and near-zero emissions; including hybrid-electric architectures combined with either fuel cells, or internal combustion engines with innovative low emission combustion modes and multi-fuel capabilities.

Speakers were invited in a personal basis, after the general coordinator of Mobidays has sent a general invitation to a wide mailing list of coordinators of European funded projects. Due to the very limited time available, the program of the conference included the presentation of only five projects, as reported in Table 6.

#### Table 6 Project summery. Projects on vehicles

| Acronym | Full name                                                     | FP<br>(EC Framework<br>Programme) | Coordinator                                                                                         | Partners<br>(number of<br>partners) | Website                        | Budget (M | €)                 | Project<br>timing         |
|---------|---------------------------------------------------------------|-----------------------------------|-----------------------------------------------------------------------------------------------------|-------------------------------------|--------------------------------|-----------|--------------------|---------------------------|
|         |                                                               |                                   |                                                                                                     |                                     |                                | Total     | EC<br>contribution |                           |
| FRESCO  | European development of a fuel-cell, reduced-emission scooter | 5                                 | ECN - Frans<br>Willem SARIS                                                                         | 3                                   |                                | 0.3       | 0.3                | 01.01.2003-<br>30.06.2005 |
| HOST    | Human Oriented Sustainable<br>Transport                       | 6                                 | CIRPS -<br>Interuniversity<br>Research Centre<br>of Sustainable<br>Development –<br>Fabio Orecchini | 9                                   | http://www.hostv<br>ehicle.eu/ |           | 2                  | 01.01.2005-<br>31.12.2007 |

| HyHEELS    | Hybrid high-energy electrical storage                          | 6                | Siemens, DE                                  | 12 | http://wwwa.vito.<br>be/hyheels/ | 4.7 | 2.6 | 01.11.2005-<br>31.10.2008 |
|------------|----------------------------------------------------------------|------------------|----------------------------------------------|----|----------------------------------|-----|-----|---------------------------|
| SPACElight | Whole space combustion for<br>diesel light duty vehicles       | 5                | IFP-Innovation,<br>Énergie,<br>Environnement | 7  |                                  | 4,1 |     | 2001-<br>2003             |
| PROCURA    | Alternative Fuel Vehicle<br>Procurement: EU project<br>PROCURA | EIE<br>programme | Ecofys                                       | 11 | www.procura-<br>fleet.eu         |     |     |                           |

## 1.4.2 Conference objectives and outputs

The second part of the conference addressed to the potential of vehicle technologies for sustainable mobility. The emphasis was on advances of power train technologies towards zero and near-zero emissions; these include hybrid-electric architectures combined with either fuel cells, or internal combustion engines with innovative low emission combustion modes and multi-fuel capabilities. Other vehicle technologies, such as materials to reduce vehicle weight and life cycle costs, safety technologies and other design features, has also been addressed particularly those showing a high potential for improving sustainability in transport.

Among the 250 projects, 170 were considered in the conference brochure and five were selected for the conference oral presentations. They are funded by the  $5^{th}$  and the  $6^{th}$  Framework Programmes and one is supported by the EIE programme.

| Name                  | Institution                                                                    | Institution quarters | Projects<br>presented | Title of presentation |
|-----------------------|--------------------------------------------------------------------------------|----------------------|-----------------------|-----------------------|
| Frank De Brujin       | ECN-Energy research Centre of the Netherlands                                  | Netherlands          | FRESCO                | FRESCO                |
| Federico Villatico    | CIRPS - Centro Interuniversitario<br>di Ricerca per lo Sviluppo<br>Sostenibile | Italy                | HOST                  | HOST                  |
| Erik Verhaeven        | VITO - Flemish Institute for<br>Technological Research                         | Belgium              | HyHEELS               | HyHEELS               |
| Christian Angelberger | IFP Powertrain Engineering                                                     | France               | SPACElight            | SPACElight            |
| Michaela Mönter       | NTDA Energía                                                                   | Spain                | PROCURA               | PROCURA               |

 Table 7 Conference presentations. Vehicle section.

Some outcomes from the conference:

- To check the other projects concerning the same area was recommended.
- To gather & summarize the EU and national projects the following information are individualized as fundamental:
  - general information: title/project name, author(s), contact person(s), project website, affiliation(s), comm. authority and period
  - technical information: category (university, research institute or industry), study level (component, energy subsystem or system), research setup & goals, component provider(s) and useful links, main findings and results.
- With regard to the technical aspects, strong emphasis on developing innovative technologies sometimes makes project objectives difficult to achieve, in the sense that objectives have sometimes become over-ambitious

It is worth to report that one of the consequences of the conference was the collaboration between the company called APG Traffic Management and the PROCURA project. The represent of APG present at the conference contributed to the public consultation on Certification issues within the PROCURA Project

#### **1.4.3 Projects analysis**

The analysis performed during this period addressed the scientific research and technological development efforts made in Europe in all areas of knowledge and which contributed, either independently or in synergy with each other, to the development of new in-vehicle technologies.

In addition to engine related, further technologies have been considered, which have the potential to decrease  $CO_2$  emissions. Examples are gear-shift indicators, tire pressure monitors, efficient air-conditioning and light-weight car parts to ensure a steady further carbon reduction in the coming decade. Materials and manufacturing processes are additional areas of research which allow giving a step forward.

A recent study refers that the additional manufacturer cost required to go from a mild 5% to a strong weight reduction 30%, increases ten times, as taken from the FP6 project Super LIGHTCAR/ SLC (Sustainable Production Technologies of Emission reduced Light-weight car concepts). Even though, vehicles are now reaching the market, which managed substantial performances at the expense of low weight strategies. High class vehicles such as the new BMW series 5 makes use of an aluminium 2,0 litre Diesel engine blocks. But, of much relevance is the fact that Japanese industry is bringing such measures into low class vehicles, such as the new Mazda 2, which integrates weight savings in the electrical cables, cooling, fuel supply and exhaust systems and suspension Another big environmental problem issued by road transport is the noise generated by traffic and vehicles, particularly in urban areas. Overall noise reduction calls for innovative technologies for per-vehicle noise reduction. Although interior noise remains a top priority for buyers, exterior noise will be the dominating noise issue in vehicle design requiring addressing topics such as tyres, engine, exhaust and intake systems and vehicle driving conditions. Besides socio-economic and environmental issues, sustainable transportation also considers safety as a specific goal.

In the context of the aforementioned, the analysis of in-vehicle technologies for sustainable development considered the following topics:

- projects leading to the latest developments in spark-ignition and compression-ignition engines, including those burning alternative fuels;
- innovative combustion modes for lean burning of fuel, e.g., Homogeneous Charge Compression Ignition (HCCI) and Control Auto Ignition (CAI);
- the developments towards hybrid-electric powertrain architectures with, either a combustion engine, or a fuel cell vehicles, respectively;
- the projects addressing new materials and manufacturing processes;

- noise;
- vehicle safety and
- new vehicle design concepts, particularly those leading to innovative urban vehicles and integrated mobility systems.

The analysis has been based on the deliverables of the several EU funded projects analysed so far, as well as on personal discussions with researchers and industries. In addition, the organization of a half-day conference provided the opportunity to join together experts and general public; as well as the participation in conferences and dedicated workshops provided additional valuable means to accomplish the analysis.

Considering the projects reported in the brochure, the most necessary research topics to improve current vehicle technologies are analysed and up to the current point of the analysis, positive and negative aspects of innovative vehicles have been identified as follows:

- Direct injection diesels have been contributing significantly to the European strategy for reducing  $CO_2$  emissions from cars and will continue to improve their environmental performance as particulate matters are being standardized, emissions of nitrogen oxide will further diminish and cleaner fuels are introduced in the coming years. Today, Diesel benefits and costs fall between gasoline engines and gasoline electric hybrids. The environmental benefits of the diesel engine extend also to light and medium and heavy trucks. In these sectors there is no competition that can match diesel's level of efficiency.
- SI engine downsizing has become a primary concern in Europe as the commitment made by the European automobile manufacturers to reduce average carbon dioxide emissions, but other areas emerge with the potential to better optimize yet conventional designs: spray-guided DISI is under development as a next-generation DISI system for gasoline engines to contribute to improving fuel consumption and the homogeneous charge compression ignited (HCCI) now emerges as a fuel-efficient, low  $NO_x$  combustion process.
- New lean-burn combustion modes, e g., CAI and HCCI offer the advantage of diesel efficiency, e. g., low  $CO_2$  and high specific power output, with virtually no soot or NOx. However, combustion control is complex and so it remains a research area with no full CAI-HCCI engines yet being demonstrated. Partial HCCI systems may reach the market in about 5 years in premium cars. But a pure HCCI engine would work best in an application were it can run at constant speed like in a series-hybrid where the combustion engine only drives a generator. Both of these engine types are still at least 5-10 years from production.
- All European car manufacturers have been involved in the research and development of hybrid engines and many models are expected to reach the market very soon, including the hybrid diesel car, which combines the best ICE technology with electric boosting. Short term possibilities will use alternative fuels or lean burn combustion technologies, while hydrogen and fuel cell engines will follow in the longer term. However, the hybrid-electric configuration of a powertrain allows combinations tailored for different usage, driving locations or circumstances and consumer preference. It is forecasted that technological developments will look in this direction.
- Fuel cells can be a long term solution, but before Fuel Cell Vehicles (FCVs) reach the market, significant research and development is required to reduce cost and to improve performance. Cost is a key challenge in the transport sector, in terms of both purchase and operation. Both the fuel cell and hydrogen storage could be more than ten times more expensive than their conventional counterparts if introduced today. But other challenges still remain, including robustness of the product in the hands of the public, training of maintenance technicians, and satisfying authorities and users that the technology is safe. Hybrid-electric powertarins making use of FCs will allow pave the way towards the final technological solution.
- Lightweight construction and innovative composite materials are already demonstrating their potential as a result of extensive R&D efforts in materials science, life-cycle analysis, and the

development of Computer-Aided Engineering (CAE) techniques. More developments are now expected from the synergistic integration of different materials and processing technologies in hybrid structures which make use of the best properties of each. Larger strides towards modular, lighter and more recyclable vehicles are expected from now on due to the big advances that nano sciences are giving towards the development of raw materials, joining technologies and manufacturing processes. A recent study refers that the additional manufacturer cost required to go from a mild 5% to a strong weight reduction 30%, increases ten times, as taken from the FP6 project Super LIGHTCAR/SLC (Sustainable Production Technologies of Emission reduced Light-weight car concepts). Even though, vehicles are now reaching the market, which managed substantial performances at the expense of low weight strategies. High class vehicles such as the new BMW series 5 makes use of an aluminium 2,0 litre Diesel engine blocks. But, of much relevance is the fact that Japanese industry is bringing such measures into low class vehicles, such as the new Mazda 2, which integrates weight savings in the electrical cables, cooling, fuel supply and exhaust systems and suspension.

- Traffic noise is an important environmental noise source in Europe. The noise caused by the interaction between tyre and road can be mostly achieved by development of sustainable transport infrastructures, but vibration levels and noise emitted by the engine are important constrains to take into account in the development of engine components for lower fuel consumption and CO2 emissions. It is foreseen that the synergy with novel materials will play a key role.
- Critical scientific and technological expertise has been mobilized for the development of new technologies for the safety of, not only vehicle users, but of road users in general. Very active R&D is currently under way in the area of information and communication technologies (ICT) to accelerate the deployment of Intelligent Integrated Safety Systems that use information and communication technologies in intelligent solutions, in order to increase road safety and reduce the number of accidents on roads. However, the development of accurate human machine interface is still an important area of research to get the best out of informative systems.
- Automotive manufacturers are beginning to think radically about new ways to provide urban mobility for all; the potentials of hybrid-electric powertrains for integrated solutions are being explored and new approaches to electric vehicles are now emerging based on small automated electrical vehicles as an alternative to the private passenger car. However, it is forecasted that electric vehicles, either battery or fuel cell driven, will soon be considered as optimum solutions for urban mobility, as they show substantial emission and primary energy benefits, and thus CO2 reduction and well-match integrated traffic management concepts. In this context, new advanced energy storage systems are still needed to achieve extended range with low volume and weight at low cost.

The innovations which will have the most impact on automotive engineering in the future are expected from three technology sectors: powertrain (alternatives including electric vehicles), safety (active collision avoidance systems) and navigation. In this context, the future automobile still has much to benefit from research on energy (development of alternative fuels) and sustainable development (through new designs for clean vehicles), as well as intelligent materials, production methods and the information society. Despite cost has always been the major challenge faced by automotive designers and engineers, its importance is now rising again after several years of decline, due to the impact on affordability and on global competitiveness raised by increased technological incorporation.

Taking into account the aspects individualized by the MOBIDAYS consortium, the projects presented at the conference are analyzed more in details, as follows.

**FRESCO** project The recent project FRESCO (European development of a Fuel-cell, Reduced Emission SCOoter) considered the application of a fuel cell to a scooter. Scooters are a very

popular means of transport in major European Cities and urban areas. However, equipped with 2stroke internal combustion engines, their use brings also serious pollution and health burdens. Powering with fuel cells would be an attractive alternative, but present fuel cell systems are hard to accommodate in the limited space available in a scooter. The specific challenge of the FRESCO project proved the viability of the clean fuel cell propulsion for small vehicles, by developing a dedicated system and by integrating it in a modern mass-production type scooter. The technological achievements comprise a compact water-cooled PEM fuel cell stack, a super capacitor peak-power device, an innovative electric motor and traction converter allowing for regenerative braking, and a smart system concept minimizing hardware needs for power and control electronics. No patents form the project

But other applications are emerging in the European market with the latest technological developments: the Danish Technology Consortium (DTC) recently announced the presentation of its new two-seat passenger car, the Hywet, equipped with a 13kW electric motor powered by a combination of a high temperature, PEM fuel cell stack, and a rechargeable lithium-ion battery, allowing for a range of 160 km and maximum speed of 80 km/h.

The lessons learnt during the project are reported:

- The development of system components and the system itself within the same project should be prevented
- Up till now, many components are not specifically developed for fuel cell systems:
  - Too large, too heavy
  - Consume too much energy
  - Release components that lead to fuel cell poisoning (e.g. lubricants)
  - Not robust enough

**HOST** project (Human Oriented Sustainable Transport). HOST is a vehicle designed to work 24 hours per day in urban areas, based on the concepts of flexibility and modularity. Both concepts reflect the human activity in an urban area imposing upon the vehicle's design an exchangeable typology that make it suitable to perform several different missions. The possibility to easily vary the platform main dimension enables HOST to be equipped with very different bodyworks, thus providing new services for mobility and goods transportation in towns, organising in a sustainable and more rational way the urban motorised traffic. The hybrid electric powertrain of HOST is the main feature making it a vehicle oriented for the urban environment: being mission oriented, the combustion engine can be optimized to operate at steady state to produce the exact energy required for the vehicle to accomplish the missions for which it is designed. In this way the engine always operate at peak efficiency conditions, being put to work whenever the batteries State-of-Charge reaches a minimum threshold and shutting off whenever a maximum threshold is reached. The consortium is composed by nine partners from 7 different countries. Of them, three are Universities and 6 industries.

At the end of the project the main deliverable will be the prototype of the HOST powertrain which is equipped with a drive-by-wire system controlling the electric motor wheel (also in remote control mode).

**HyHEELS** project provides an UltraCap energy storage system for the use in hybrid and fuel cell vehicles, which satisfies all properties necessary to make an integrative component. Powerful and reliable energy supply is crucial to fulfil the stringent requirements of start up and acceleration in the future generation of hydrogen fuel cell powered passenger cars. Ultracapacitors can fill these requirements but need to be adapted to future automotive hydrogen applications, satisfying the requirements of cost, efficiency, safety and reliability. HyHEELS intends to provide all necessary information to enable the integration of ultracapitors into the fuel cell vehicle architecture based on the current state of the art technology. However, safety and reliability of commercially

available supercapacitors decline at temperatures above 40°C, which are frequently encountered within fuel cell powered vehicles.

- The workplan foresees:
  - UltraCap modules
    - Development of UltraCap module suitable for automotive applications
  - UltraCap controller
    - Development of advanced controller for UltraCap module necessary to satisfy future requirements of all automotive applications
  - Advanced research, testing & evaluation
    - Confirmation and validation of initial requirements by simulations and modelling
    - Assessment of added value of UltraCap with possible applications together with environment impact
    - On the road testing with several types of existing hybrid vehicles equipped with UltraCap modules

The work already performed is:

- UltraCap modules
  - Build of a standard cell module for hybrid and fuel cell vehicles
    - Compromise between energy content and scalability
    - For middle and high power applications
    - Maximum operating voltage
    - Modules developed and tested
  - Test plan is worked out to approve modules and to document product development process
  - UC module main components / functionalities:
    - Cell
    - Housing
    - Cooling system
    - Controller
- UltraCap controller
  - Complete diagnosis of energy storage for future vehicle applications
  - Potential free voltage measurement
  - Charge balancing system to maintenance individual cells to avoid
    - Overcharge of mismatched cells
      - Inhomogeneous temperature distribution within module
      - Exceeds 2.8 V over a longer period
      - Decrease of expected life time of capacitor
      - Lost in capacity
      - Increase of the internal resistance
  - Requirements on the UltraCap controller for different applications (passenger car, heavy duty) were completely analysed and compiled
  - Best configuration of one UltraCap module was determined
- Advanced research, testing & evaluation
  - Confirmation and validation of initial requirements by simulations and modelling
  - Several templates and formatted documents to ensure common approach generated and received data was reviewed
  - Simulations (passenger car, heavy duty) were performed
  - Report on recommendations by other research
  - Possible opportunities for dissemination were identified

The achievements are:

- Gathering and compilation of requirements for UltraCaps and controller
- Advanced UltraCap development and testing

- Advanced packaging
- Ultracap controller development with set up of evaluation board include cell balancing and voltage measurement
- Concentration on other research with first consideration regarding to design simulations of the power train
- Life time tests at different conditions and basic work on carbon to define characteristics with
- goal to increase capacitance density and operating voltage
- Voltage measurement realized
- First balancing tests performed
- Feedback from the other WP's by start-up of collection input data from OEM's
- Gathering of information with dedicated input datasheets for each test vehicle
- Requirements to allow proper integration of new UltraCap modules and instrumentation
- Collection of recommendations from other projects
- Identification of possible opportunities for dissemination
- Collection of LCA inputs

**SPACElight** project investigated the combination of several engine and injection technologies and implemented them on single-cylinder engine concepts up to final economic and technical assessment of the in-vehicle on the road potential. The objectives were to meet EURO 4 emissions limits without fuel sensitive after treatment for NOx and/or particulates, while maintaining the low CO2 emissions advantage of the best state of the art diesel engines. Space light was a R&D projects maily oriented to HCCI Diesel application for automotive. The other EC funded projects on HCCI generic combustion research are:

- 4-SPACE (1998-2000) carried the basic research. The engine concepts was developed in the Gasoline CAI project
- D-ULEV IntegrationPlatform (2001-2004)
- Hy-SPACE (2002- 2004) which carried out the Diesel HCCI R&D for truck & bus
- EUCAR CO2PERATE program
- Some outcomes exploited for the FP6 NICE project, subproject A1.
- The HCCI (or LTC) has demonstrated very good potentials to reduce engine-out emissions

Considering the on laboratory single cylinder engines. More investigations have to be carried out on its real-world implementation and the multi-cylinder application have to be deeply studied with wide operating range (realistic compromise between NO<sub>x</sub>/PM, CO<sub>2</sub>, HC/CO, noise, interaction with after-treatment, costs, compatibility with alternative fuels).

Its wide introduction into the market will depend on EU pollutant legislations.

**PROCURA** project which was launched right after, assist the market development of alternative fuels and vehicles through the establishment of large scale demonstration projects, aiming to provide a thorough understanding of the barriers and issues associated with the market penetration of alternative fuels and respective vehicle technologies in Europe. PROCURA also includes biodiesel and natural gas vehicles and the work programme further addresses the development of models for large-scale procurement of such vehicles. Moreover, PROCURA also aims to set up novel ways of facilitating green fleet procurement via GreenLease schemes, organizing secondhand market development, and designing a certification system for Alternative Fuel Vehicles.

Some of the barriers individualized to the alternative fuel vehicles (AFV) are:

- Lack of Infrastructure
- Maintenance & Repair
- Market Knowledge
- Purchase costs

- Changes in consumer's driving behavior
- Lack of second-hand market

Some of the proposed solution are:

- Creating central buyer pools for Infrastructure maintenance and repair facilities buyer power (purchase cost)
- Dissemination of Best practices & Provide state of the art manuals/tools
- Incentive systems & Financing schemes
- Application of the Incentive systems & Financing schemes
- Pilot case studies

In the frame work of the project manuals will be produced. They will be on

- Market Barriers for Large-Scale AFV Procurement
- Infrastructure development for AFVs
- Training Guidelines for Maintenance and Support of AFVs
- User manual for fleet owners concerning AFVs
- Available incentive systems

| Acronym | Research content                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Consortium balance           | Achieved results                                                                                                                                                                                         | Exploitation of the results                                                                                                              | Potential exploitation of results                                                                                                                                                                             | market<br>readiness                                                                                                                                                                                                                                                                     |
|---------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| FRESCO  | <ul> <li>Application of a fuel cell to a scooter.</li> <li><u>The Objectives are:</u></li> <li>Clean fuel-cell propulsion for scooters</li> <li>Proof viability by integrating in mass-production type</li> <li>State-of-the-art performance &amp; comfort, 0.8 m/s<sup>2</sup>, 75 km/hr &amp; 100 km <u>The Technical Content</u> proposed:</li> <li>Innovative system layout with variable rail voltage and regenerative braking</li> <li>Innovative liquid-cooled 6 kW fuel cell stack</li> <li>Dedicated 6kW / 120 kJ supercap module with no need for balancing</li> <li>Integrated bi-directional traction converter</li> <li>Composite 700 bar hydrogen tank</li> <li>Vehicle integration, roller bench and circuit testing</li> </ul> | 4 industries                 | The realization of the<br>scooter which worked<br>for 10 laps and it<br>reached 50 km/hr.<br>A dedicated PEM was<br>designed for the<br>scooter application<br>• 80 cells<br>• 7.0 kWe<br>• 55 V / 130 A | Results were exploited<br>for:<br>-Piaggio Zip hybrid<br>scooter<br>-Battery powered Zero<br>Emission Urban Shuttle<br>-HydroGem project | The developed PEM<br>could find other<br>applications. One of the<br>lessons learnt is: the<br>development of system<br>components and the<br>system itself within the<br>same project should be<br>prevented | -Deployment<br>of fuel cell<br>vehicles to<br>consumers<br>is a bridge<br>too far.<br>-Captive<br>Fleets are<br>the right<br>entry point<br>(H2 fuelling<br>easier)<br>-Costs need<br>to be much<br>lower than at<br>present.<br>Government<br>funding is<br>crucial for<br>first entry |
| HOST    | HOST is a vehicle designed to<br>work 24 hours per day in<br>urban areas, based on the<br>concepts of flexibility and<br>modularity.<br>The possibility to easily vary<br>the platform main dimension<br>enables HOST to be equipped<br>with very different bodyworks,<br>thus providing new services<br>for mobility and goods<br>transportation in towns,<br>organising in a sustainable<br>and more rational way the<br>urban motorised traffic.<br>The hybridelectric powertrain<br>of HOST is the main feature                                                                                                                                                                                                                            | 3 university<br>6 industries | Realization of the<br>powertrain prototype.<br>Series hybrid power<br>system.<br>Drive-by-wire system.<br>Electric motor wheel<br>application.                                                           | The project is leading to international collaborations to realize a full vehicle prototype.                                              | The diesel engine could<br>be substitute by a FC<br>propulsion system. The<br>concept of a power train<br>which can be emploied<br>for several applications<br>can found further<br>application               | Towards a<br>market<br>application,<br>the<br>necessary<br>next step is<br>the<br>realization of<br>the whole<br>vehicle, and<br>after that a<br>miniseries<br>production.                                                                                                              |

| HyHEELS    | <ul> <li>Development of an<br/>improved energy supply<br/>concept for fuel cells based<br/>on advanced, powerful Ultra<br/>Capacitors (UltraCap's).</li> <li>Development of advanced<br/>UltraCap module for<br/>integration into fuel cell<br/>vehicle architecture</li> <li>Advanced research,<br/>simulation, installation, and<br/>evaluation of UltraCap<br/>modules on test benches<br/>and existing Hybrid<br/>Vehicles</li> </ul> | 9 Companies<br>/Centre<br>3 Universities         | Development in:<br>-UltraCap modules<br>-UltraCap controller<br>-Advanced research,<br>testing & evaluation<br>Confirmation and<br>validation of initial<br>requirements by<br>simulations and<br>modeling is carried out.<br>Several templates and<br>formatted documents to<br>ensure common<br>approach generated<br>and received data was<br>reviewed.<br>Simulations (passenger<br>car, heavy duty) were<br>performed.<br>Report on<br>recommendations by<br>other research is | Applications of the<br>technology already on 2<br>buses and 5 cars.<br>Possible opportunities<br>for dissemination have<br>been already identified                                                          | High potential<br>applications in automotive<br>sector.                                    | Close to<br>market<br>application.<br>The<br>objective is<br>to obtain a<br>price of 1€<br>cent/F. |
|------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|
| SPACElight | Investigated the possibility of<br>achieving a wide range of<br>controlled Homogeneous<br>Charge Compression Ignition<br>(HCCI) with near zero NOx<br>and PM emissions while<br>keeping the high efficiency<br>and full load performance<br>level of the best state of the<br>art passenger car diesel<br>engine.                                                                                                                         | 5 Industries<br>2 Universities                   | Analysis to Lean out<br>the mixture in the<br>cylinder (early/late<br>injection, multiple<br>injector technology)<br>and to reduce<br>temperature, levels in<br>the cylinder (high<br>exhaust gas<br>recirculation)                                                                                                                                                                                                                                                                 | HCCI (or LTC) has<br>demonstrated very good<br>potentials to reduce<br>engine-out emissions                                                                                                                 | On-going research<br>concerns its real-world<br>implementation                             | Its wide<br>introduction<br>into the<br>market will<br>depend on<br>EU pollutant<br>legislations   |
| PROCURA    | It intends to assist the market<br>development of alternative<br>fuels and vehicles through the<br>establishment of large scale<br>demonstration projects,<br>aiming to provide a thorough<br>understanding of the barriers<br>and issues associated with<br>the market penetration of<br>alternative fuels and<br>respective vehicle<br>technologies in Europe.                                                                          | 1 Municipality<br>2 Universities<br>8 Industries | Development of<br>models which are<br>tailored to specific<br>technology stages<br>adapted to national<br>demands, aspects<br>and barriers<br>composed of four<br>principal variables:<br>type of fuel, buyer<br>pools (procurement<br>partners), incentive<br>systems & obligations<br>to green procurement,<br>third party<br>involvement and<br>financial schemes.<br>Progress in<br>certification                                                                               | Pilot case in Valentia<br>involving 85 Flexifuel<br>vehicles for public<br>transport. The private<br>and public transport<br>companies are working<br>together.<br>Dissemination of the<br>project results. | The results could be<br>applied for incentive<br>systems & obligations,<br>certifications. | Some of the<br>project tools<br>are already<br>available                                           |

In sustainable point of view, the projects presented at the vehicle section of the London conference have addressed the aspects as schematically reported in Table 8.

| Acronym    | equity &<br>accessibility | safety & reliability | co-modality | energy & land use | renewable energy | emissions & noise | CO2 emissions | technology &<br>development | economic return | regional<br>development |
|------------|---------------------------|----------------------|-------------|-------------------|------------------|-------------------|---------------|-----------------------------|-----------------|-------------------------|
| FRESCO     |                           | *                    |             | **                | *                | **                | **            | **                          |                 |                         |
| ноѕт       | *                         | *                    | **          | **                |                  | **                | **            | **                          |                 |                         |
| HyHEELS    |                           | *                    |             | **                |                  | *                 | **            | **                          |                 |                         |
| SPACElight |                           |                      |             |                   |                  | *                 | **            | **                          |                 |                         |

#### Table 8 Projects linkages to sustainable mobility objectives. Vehicle projects

|         | r |  |   | - |    |    |  | - |
|---------|---|--|---|---|----|----|--|---|
| PROCURA |   |  | * | * | ** | ** |  |   |

The analysis concludes with the future prospects found.

While Mobidays proceeded and the present report was updated, a proposal was made by the European Parliament to alter the target of 125gCO2/km envisaged by the European Commission to 125gCO2/km and o postpone it from 2012to 2015.

It is the common sense that vehicles will continue to be majority fuelled by Diesel and gasoline and a decline is foreseen only by 2060 when synthentic and biofuels will start to emerge to be dominant by 2100. It is then clear among the several actors (vehicle manufacturers, politicians and legislators and end users) that much can still be gained from technological improvements in conventional internal combustion engines, including the use of alternative fuels and the development of new combustion modes or powertrain strategies. Hydrogen will continue to be a minor energy source up to 2100. These trends are expected to be similar worldwide and the strategies adopted in the different continents will only differ due to the diverse market trends: while 70% of the passenger vehicles marketed in the United States of America has between 6-8 cylinders, 80% of the vehicles market in Asia has 3-4 cylinders. In the meanwhile, technological developments are still necessary and worth to make gasoline engines as efficient as Diesel engines and Diesel engines as clean as gasoline engines.

Major improvements in lean combustion modes, such as HCCI/CAI, will allow decreasing fuel consumption at the same time as addressing major pollutant emissions. Homogeneous combustion is bringing a renewable interest in multi point fuel injection as a low cost injection system allowing improved and controlled mixing but calls for fundamental research in atomization, spraywall impingement phenomena to address the use of alternative fuels. In what concerns SI engines, the impact of downsizing is enormous, either in small vehicles as in upper class vehicles. Small size SI engines account for a significant proportion of the European market and a technological breakthrough is necessary to recover the competitiveness of small SI engines relatively to Diesel engines. CRF forecasts that, starting from a 1.4 liter engine, downsizing strategies will allow decreasing GHG emissions to below 120gCO2/km, while even stronger downsizing strategies starting with 1.2 litre engine will allow going below 100gCO2/km. The reduction of pumping losses will allow further improvements: electronic valve control and direct injection systems will be the main technological players. Upper class vehicles have a larger potential to accommodate the yet high cost technological solutions. Despite the small market and km shares, upper class vehicles account for 27% share of CO2 emissions and can, therefore, be used as demonstrators to pave the way towards more competitive integrated solutions making use of hybridisation, combustion management, electronic engine control and after-treatment.

Progresses in Diesel engines have a huge potential for environmental improvements, as the Diesel market reached 50% of the European market in 2006. It is suggested a technology breakthrough is required to meet the CO2 targets. The challenge is that the technology has to be accepted by the market, which urges for the development of low cost after-treatment systems. Improvements are yet expected from fuel injection systems, but fuel injection pressures above 2000 bar require further developments of the already current available piezo injectors. The fuel is the current problem and, despite NOx catalysts and SCR systems came to solve the problem, major hurdles still need to be overcome due to the negative effects those systems have in the overall efficiency of the engine, as well as due to their sensitivity to fuel properties. The development of more efficient after-treatment technologies is required to overcome the increased NO<sub>x</sub> emissions caused by engine downsizing. But low cost systems are required to make clean diesel engines accepted in the market. This calls for research in innovative particle trap systems, filtration of ultra-fine particles, multi functional reactors, which can be efficient for HCCI combustion modes.

Larger downsize ratios than those already achieved require the ability to increase the temperature at the turbine inlet; to increase the efficiency of the turbocharger and to enlarge the mapping of the

turbo-charging and can be realized by integrating the design of the turbocharger with the manifold.

The integration of the engine with the after-treatment system should be considered as a way to decrease the overall complexity with a positive impact in production costs. "Cold Combustion" is a technique suggested by FEV and Renault to put together the current developments towards efficient engines and after-treatment devices, which urges for scientific research on the shape of injectors, advanced cooling systems and improved mixing.

It is unanimous that adequate fuels have to be developed to limit GHG emissions without increasing the other pollutants. Project **NICE** already addressed the CSC fuel with high benefits in PM emissions, but a new fuel is now proposed by VW, which has been observed in test engines to give virtually zero NOx emissions. But further research is required to develop fuel specifications; to adapt the hardware to the fuel; to look to the transient operation and to integrate NOx aftertreatment.

Engine design and fuel development should be taken together in an integrated approach, making use of technological approaches available to control mixing and combustion. But the best balance between several technological solutions must achieve the market acceptability. In this context, Renault suggests that the combined CI-HCCI concept can be controlled in a 2-stroke engine for spontaneous combustion to occur at the top dead centre. Such a new combustion mode, combined with the use of variable valve timing, advanced boosting and adjustment of fuel injection, allows increasing efficiency with noise levels below 72 dB.

Improved capabilities of computer simulations are required to decrease the costs associated with prototyping and systematic experimentation. This calls for advanced combustion models with coaxial injectors with nozzle variable geometry; models to accurately describe cyclic variations which can capture  $NO_x$  and control strategies for multivariant parameters.

From the point of view of the fuel, standardisation of GHG emissions for alternative fuels is required to assess the benefits of biofuels and synthetic fuels. An initiative has been launched in France leader by IFP, the **seminar IFP/IDAME**, where European and American researchers joined efforts to discuss appropriated methodologies. But convergence has not yet been achieved in the European Union and challenges remain to develop a unique methodology to calculate GHG emissions and to implement it.

In view of the discussion for the application of "in use compliance" (IUC) in Euro 6 regulations, it is necessary to develop accurate sensors for OBD measurements.

European citizens are becoming more sensitive to local environmental problems and local authorities lean to legislate specific environmental targets for urban environment. In this context, urban mobility pushes research to address the specific problems raised by traffic congestion: new technological concepts are necessary to be developed to integrate the vehicle with traffic management systems, taking into account emissions and safety of drivers and pedestrians. Innovation is expected to come from Information Technologies and electric powertrains.

From a worldwide point of view, Japan is currently the country with the lowest target of CO2

emission. But it is worth noting that predictions reported by CARB forecasts that Europe will join Japan in the lead of environmental restrictions in a scenario extending up to 2016.

Anyway, a commonly accepted suggestion to stimulate further improvements is to give credits to car manufacturers who accomplish with emission values below the legislated targets.

## 1.5 European research on infrastructures for sustainable mobility

## **1.5.1** Overview of the considered projects

The EC has been funding research on infrastructures for sustainable transport since soon after a European Union transport policy started to develop. The first EC White Paper on transport was published in 1992. Accordingly, several projects relevant to the sustainable transport theme were

funded under the non-nuclear energy programmes JOULE (R&D) and THERMIE (demonstration). Moreover, within FP4 (1994-1998) a research programme was specifically dedicated to transport: the "research for sustainable mobility". EC transport policy has since continued to develop, with a new transport White Paper published in 2001, and its mid-term review issued in 2006. In parallel with these developments, in FP5 (1998-2002) sustainable mobility projects have been increasingly funded, mostly under the Energy, Environment and Sustainable Development (EESD) theme; some projects were also funded under the Competitive and Sustainable Growth (GROWTH) theme. In FP6 (2002-2006) the main theme under which sustainable mobility projects were funded is Theme 6: Sustainable Development, Global Change and Ecosystems; within this theme, of particular importance are Thematic Priorities 6.1 "Sustainable Energy Systems" and 6.2 "Sustainable Surface Transport"; a number of projects which are relevant to the development of technologies for sustainable mobility were also funded under other Priorities as well horizontal themes.

In MOBIDAYS, the coordinator and the other partners have started their research by building a database of all projects relevant to sustainable mobility, as defined in MOBIDAYS, which were funded as part of the programmes mentioned above. This database was built starting from the CORDIS database of EC-funded projects and consisted of a list of 224 projects. In this chapter only those projects addressing infrastructures for sustainable mobility are discussed.

We first selected out of the database only those projects that were deemed relevant to the theme of infrastructures for sustainable road transport, and we integrated these with other relevant projects listed in the following EC-funded project synopses:

"European Bio-Energy Projects 1999-2002";

"European Fuel Cell and Hydrogen Projects 1999-2002";

"European Fuel Cell and Hydrogen Projects 2002-2006";

"European Hydrogen and Fuel Cell Projects" (2004)

The relevance of the selected projects to the theme of infrastructures for sustainable mobility was evaluated based on the projects' descriptions available from the above sources and, where available, from the projects' websites. Moreover, due to our expertise in the field, we were already aware of several projects in the area of sustainable mobility and therefore previous knowledge was also used when selecting relevant projects. This resulted in the selection of a total of 32 projects for further consideration and analysis; these are listed in alphabetical order in the table below:

| Acronym             | Full name                                                                                                                      | FP<br>(EC Framework<br>Programme) | Coordinator                                                             | Partners<br>(number of<br>partners) | Website            | Budget (M | Project<br>timing  |                                     |
|---------------------|--------------------------------------------------------------------------------------------------------------------------------|-----------------------------------|-------------------------------------------------------------------------|-------------------------------------|--------------------|-----------|--------------------|-------------------------------------|
|                     |                                                                                                                                |                                   |                                                                         |                                     |                    | Total     | EC<br>contribution |                                     |
| AER-GAS             | A New Approach for<br>the Production of a<br>Hydrogen-Rich Gas<br>from Biomass: An<br>Absorption Enhanced<br>Reforming Process | 5                                 | ZSW, Gemany<br>michael.specht<br>@zsw-bw.de                             | 9                                   | www.aer-<br>gas.de | 2.4       | 1.4                | 36 months                           |
| BIOCAT              | Catalyst Development<br>for Catalytic Biomass<br>Flash Pyrolysis<br>Producing Promising<br>Liquid Bio-Fuels                    | 5                                 | CERTH,<br>Greece<br>Prof Lacovos<br>Vasalos<br>cperi@cperi.ce<br>rth.gr | 8                                   | n/a                | 2.5       | 1.3                | 36 months<br>Jan 2002 –<br>Dec 2004 |
| BIOENERGY<br>CHAINS | Bio-Energy Chains<br>from Perennial Crops                                                                                      | 5                                 | CRES, Greece<br>Pavlos<br>Gavrilides                                    | 10                                  | n/a                | n.a.      | n.a.               | 45 months<br>Dec 2001 –<br>Aug 2005 |

#### Table 9 Project summery. Projects on infrastructures
|                  | in South Europe                                                                                                                          |   | dfousek@cres.                                                                                           |    |                                |      |      |                                      |
|------------------|------------------------------------------------------------------------------------------------------------------------------------------|---|---------------------------------------------------------------------------------------------------------|----|--------------------------------|------|------|--------------------------------------|
| BIOGASMAX        | Biomethane for Urban<br>Transport                                                                                                        | 6 | yı<br>Urban<br>Community of<br>Lille, France<br>Pierre<br>Hirtzberger<br>phirtzberger@c<br>udl-lille.fr | 31 | www.biogasma<br>x.eu           | 16.9 | 7.5  | 48 months<br>Jan 2006 –<br>Dec 2009  |
| Bio-<br>Hydrogen | Development of a<br>Biogas Reformer for<br>Production of<br>Hydrogen for PEM<br>Fuel Cells                                               | 6 | PROFACTOR,<br>Austria<br>Dr Johann<br>Bergmair                                                          | 10 | www.profact<br>or.at           | 1.4  | 0.8  | 24 months<br>Jul 2005 –<br>Jun 2007  |
| ΒΙΟΤΟΧ           | Pyrolysis Oil Toxicity<br>Assessment for Safe<br>Handling and<br>Transport                                                               | 5 | CIRAD, France<br>Jacques Valeix                                                                         | 3  | n/a                            | 0.5  | 0.4  | 30 months<br>Jan 2003 –<br>Jun 2005  |
| CATLIQ           | CHP Plant Based on<br>Catalytic Liquid<br>Conversion Process                                                                             | 5 | FLS Miljoe,<br>Denmark<br>Preben<br>Tolstrup                                                            | 3  | n/a                            | 2.4  | 1.2  | 36 months<br>Jan 2002 –<br>Dec 2004  |
| CHRISGAS         | Clean Hydrogen-rich<br>Synthesis Gas                                                                                                     | 6 | Växjö<br>University,<br>Sweden<br>Sune<br>Bengtsson<br>sune.bengtsso<br>n@power.alsto<br>m.com          | 20 | www.chrisg<br>as.com           | 15.6 | 9.5  | 60 months<br>Sept 2004 –<br>Aug 2009 |
| DIPROWAST<br>E   | Enhanced Production<br>of Methane from<br>Anaerobic Digestion<br>with Pre-processed<br>Solid Waste                                       | 5 | Ingenieurbüro<br>Dobelmann &<br>Kroke<br>Jürgen<br>Dobelmann                                            | 6  | n/a                            | 1    | 0.5  | 24 months<br>Jan 2003 –<br>Dec 2004  |
| ECHI-T           | Large Bioethanol /<br>ETBE Integrated<br>Project in China and<br>Italy                                                                   | 5 | ETA Florence,<br>Italy                                                                                  | 13 | n/a                            | n.a. | n.a. | n.a.                                 |
| FERMATEC         | Development of a<br>Biotechnological High<br>Yield Process for<br>Ethanol Production<br>Based on a<br>Continuous<br>Fermentation Reactor | 5 | TECNIA,<br>Portugal<br>Antonio<br>Ferreira                                                              | 10 | n/a                            | 1    | 0.5  | 32 months<br>Jan 2003 –<br>Aug 2005  |
| GASASH           | Improvement of the<br>Economics of<br>Biomass/waste<br>Gasification by Higher<br>Carbon Conversion<br>and Advanced Ash                   | 5 | VTT, Finland<br>Mikko Kara                                                                              | 8  | n/a                            | 2.4  | 1.2  | 36 months<br>Nov 2002 –<br>Oct 2005  |
| GENHYPEM         | Proton-Exchange<br>Membrane based<br>Electrochemical<br>Hydrogen Generator                                                               | 6 | Université<br>Paris-Sud,<br>France<br>Prof Pierre<br>Millet                                             | 9  | www.genhy<br>pem.u-<br>psud.fr | 2.5  | 1.3  | 36 months<br>Oct 2005 –<br>Sep 2008  |
| Hi2H2            | Highly efficient, High<br>temperature,<br>Hydrogen production<br>by Water Electrolvsis                                                   | 6 | EDF, France<br>Dr Philippe<br>Stevens<br>Philippe.steven<br>s@edf.fr                                    | 4  | www.hi2h2.<br>com              | 1.77 | 1.1  | 36 months<br>Aug 2004 –<br>Jul 2007  |
| HYDROSOL-II      | Solar Hydrogen via<br>Water Splitting in<br>Advanced Monolithic<br>Reactors for Future                                                   | 6 | CERTH,<br>Greece<br>Athanasios<br>Konstandopoul<br>os                                                   | 5  | n/a                            | 4.3  | 2.2  | 48 months<br>Nov 2005 –<br>Oct 2009  |

|                    | Solar Power Plants                                                                                                                                                                                          |   |                                                                                                          |    |                                                                                          |         |        |                                      |
|--------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|----------------------------------------------------------------------------------------------------------|----|------------------------------------------------------------------------------------------|---------|--------|--------------------------------------|
| HYMOSSES           | Advanced Hydrogen<br>Storage Material                                                                                                                                                                       | 5 | Ernst Hammel:<br>hae@electrova<br>c.com                                                                  | 10 | n/a                                                                                      | 4.3     | 2.4    | 36 months<br>Nov 2002 –<br>Oct 2005  |
| HYSTORY            | Hydrogen Storage in<br>Hydrides for Safe<br>Energy Systems                                                                                                                                                  | 5 | IFE, Norway<br>jiri.muller@ife.n<br>o                                                                    | 9  | n/a                                                                                      | 4.2     | 2.4    | 36 months<br>Nov 2002 –<br>Oct 2005  |
| HYSTRUC            | Demonstration and Testing<br>of an Innovative 30 bar,<br>Low Cost, Small Size<br>Pressure Electrolyser<br>(PME), in the MW Power<br>Range, for the Cost<br>Efficient Production of<br>Electrolytic Hydrogen | 5 | MTU, Germany<br>rolf.brand@mtu<br>-online.com;<br>Pietro.d'Erasm<br>o@hydro.com                          | 3  | n/a                                                                                      | 7.4     | 3.1    | 42 months<br>Feb 2003 –<br>Jul 2006  |
| HYTHEC             | Hydrogen Thermochemical<br>Cycles                                                                                                                                                                           | 6 | CEA, France<br>Mr Alain Le<br>Duigou<br>aleduigou@cea<br>.fr                                             | 6  | www.hythec.or<br>g                                                                       | 2.9     | 1.9    | 42 months<br>Apr 2004 –<br>Sep 2007  |
| HYVOLUTION         | Non-thermal Production of<br>pure Hydrogen from<br>Biomass                                                                                                                                                  | 6 | Agrotechnology<br>& Food<br>Innovation BV,<br>The<br>Netherlands<br>Dr Pieternel<br>Claassen             | 22 | www.hyvolution<br>.nl                                                                    | 14.2    | 9.9    | 60 months<br>Jen 2006 –<br>Dec 2010  |
| HY2SEPS            | Hybrid hydrogen – carbon<br>dioxide SEParation<br>Systems                                                                                                                                                   | 6 | FORTH,<br>Greece<br>Dr Vladimiros<br>Nikolakis                                                           | 7  | http://hy2seps.i<br>ceht.forth.gr                                                        | 2.5     | 1.5    | 36 months<br>Nov 2005 –<br>Oct 2008  |
| -                  | Local and Innovative<br>Biodiesel                                                                                                                                                                           | 6 | EREN, Spain<br>Mr Ricardo<br>Gonzalez<br>Mantero<br>gonmanri@jcyl.<br>es                                 | 12 | http://www.feda<br>rene.org/public<br>ations/Projects/<br>Contrat/Biodies<br>el/home.htm | 1.4     | 0.7    | 24 months<br>Jan 2004 –<br>Feb 2006  |
| NATURALHY          | Preparing for the Hydrogen<br>Economy by using the<br>existing Natural Gas<br>system as a catalyst                                                                                                          | 6 | Gasunie, The<br>Netherlands<br>Mr Onno<br>Florisson<br>o.florisson@ga<br>sunie.nl                        | 40 | www.naturalhy.<br>net                                                                    | 17.2    | 11     | 60 months<br>May 2004 –<br>Apr 2009  |
| NEMESIS            | New Method for Superior<br>Integrated Hydrogen<br>generation System                                                                                                                                         | 6 | DLR, Germany<br>Mrs Antje<br>Woerner                                                                     | 9  | n/a                                                                                      | 3.9     | 2.2    | 36 months<br>Dec 2005 –<br>Nov 2008  |
| NICHES             | New and Innovative<br>Concepts to Help European<br>transport Sustainability                                                                                                                                 | 6 | POLIS,<br>Belgium<br>Mr Sylvain<br>Haon                                                                  | 7  | www.niches-<br>transport.org                                                             | 1       | 1      | 29 months<br>Nov 2004 –<br>Mar 2007  |
| NILE               | New improvements for lignocellulosic ethanol                                                                                                                                                                | 6 | IFP (Institut<br>Francais du<br>Petrole)                                                                 | 21 | www.nile-<br>bioethanol.org                                                              | 12.8 M€ | 7.7 M€ | 48 months<br>Oct 2005 –<br>Sept 2009 |
| SOLHYCARB          | Hydrogen from solar<br>thermal energy: high<br>temperature solar chemical<br>reactor for co-production of<br>hydrogen and carbon black<br>from natural gas cracking                                         | 6 | CNRS, France<br>Dr Gilles<br>Flamant                                                                     | 11 | http://www.pro<br>mes.cnrs.fr/AC<br>TIONS/Europe<br>enes/solhycarb<br>.htm               | 3.2     | 2      | 48 months<br>Mar 2006 –<br>Feb 2010  |
| SOLREF             | SOLar steam REForming of<br>methane rich gas for<br>synthesis gas production                                                                                                                                | 6 | DLR, Germany.<br>Dr Stephan<br>Moller<br>stephan.moelle<br>r@dlr.de                                      | 9  | www.solref.dlr.<br>de                                                                    | 3.45    | 2.1    | 45 months<br>Apr 2004 –<br>Dec 2007  |
| SUPER-<br>HYDROGEN | Biomass and Waste<br>Conversion in Supercritical<br>Water for the Production of<br>Renewable Hydrogen                                                                                                       | 5 | Biomass<br>Technology<br>Group, The<br>Netherlands<br>Bert van de<br>Beld:<br>Vandebeld@bt<br>gworld.com | 7  | n/a                                                                                      | 2.5     | 1.4    | 52 months<br>Dec 2001 –<br>Mar 2006  |
| SOLAR-H            | Linking molecular genetics<br>and bio-mimetic chemistry<br>– a multidisciplinary<br>approach to achieve                                                                                                     | 6 | Uppsala<br>University,<br>Sweden<br>Prof Stenbjörn                                                       | 8  | www.fotomol.u<br>u.se/Forskning/<br>Biomimetics/sol                                      | 2.3     | 1.8    | 36 months<br>Jan 2005 –<br>Dec 2007  |

|            | renewable hydrogen<br>production                                                                                                                                    |   | Styring                                                                                             |    | arh/index.shtm        |      |     |                                     |
|------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|-----------------------------------------------------------------------------------------------------|----|-----------------------|------|-----|-------------------------------------|
| TIME       | Technological Improvement<br>for Ethanol Production from<br>Lignocellulose                                                                                          | 5 | VTT, Finland<br>Prof Juha<br>Ahveinainen                                                            | 7  | n/a                   | 4.3  | 2.5 | 40 months<br>Nov 2002 –<br>Feb 2006 |
| ZERO REGIO | Lombardia and Rhein-Main<br>towards Zero Emission:<br>Development and<br>Demonstration of<br>Infrastructure Systems for<br>Hydrogen as an Alternative<br>Motor Fuel | 6 | Infraserv<br>GmbH,<br>Germany<br>Dr Heinrich<br>Lienkamp<br>heinrich.lienka<br>mp@infraserv.<br>com | 16 | www.zeroregio.<br>com | 21.4 | 7.5 | 60 months                           |

It is important to note that all selected projects are from FP5 and FP6 only. The reason for this is that, in general, detailed information on EC-funded projects in the area of sustainable mobility is not easy to obtain; early projects from FP4 and before are even difficult to trace and therefore we did not include these in our analysis. However, even FP5 and FP6 projects, for which records exist on databases and synopses, have posed problems when it came to finding out the results they generated and the commercial viability of the technologies they developed; this is further discussed in Section 5.3 below.

It is also important to mention that the main focus of MOBIDAYS is on RTD projects on sustainable road transport. Therefore, the projects we have considered and included in the above list are mostly projects developing technologies relevant to infrastructures that have the potential to make road transport more sustainable. However, a limited number of demonstration projects were also included, especially those having a significant RTD component. Moreover, some projects of other nature, such as coordination actions, were also considered when deemed particularly important for the commercialisation of the technologies developed by the RTD projects; projects of this type were particularly selected for presentation at the conference in London (discussed in detail in Section 5.2 below), because they offered an overview of the current status of deployment of technologies in the area of infrastructures for sustainable mobility which was deemed particularly valuable to stimulate discussion with the conference attendees.

Finally, it is worth noting that technologies that are relevant to infrastructures for sustainable mobility encompass at least the following:

- Technologies for the production, storage, transmission, delivery and dispensing of alternative, more sustainable road transport fuels.
- Technologies for the optimisation or road transport and the management of demand.

In this research however we mainly focused on infrastructures related to alternative road transport fuels, which is the area where most research efforts have been devoted so far. Apart from one project, we have decided not to address research on infrastructures aimed at optimising road transport and managing demand due to time and resource constraints and also to the fact that projects in this area appeared to be more difficult to trace; however, this is indeed an important area of research, with a potentially significant impact on the sustainability of road transport, which should also be considered for future analysis.

## **1.5.2 Conference objectives and outputs**

The half-day conference on "Infrastructures for Sustainable Mobility" took place at Imperial College, London, UK on 21<sup>st</sup> September 2007. It was funded by the EC under the SSA MOBIDAYS "Sustainable Mobility Days", and entirely organised by Imperial College.

The conference on "Infrastructures for Sustainable Mobility" was aimed at reviewing achievements and shortfalls of EC-funded research in the area of infrastructures for the production, transmission and delivery of alternative road transport fuels. The idea was to select the most significant projects in the area, invite speakers from organisations participating in these projects to report on their main results and discuss the latter with the public attending the conference.

The MOBIDAYS database of projects was also used to circulate information on the conference to relevant people and to invite coordinators of completed and ongoing projects to fill out a questionnaire and to participate in the conference as speakers presenting results of their projects. Coordinators of the 32 selected projects were specifically targeted in all cases where their contact details were available. In parallel with this, informal input from senior staff at Imperial College was sought on the infrastructures conference programme, with the aim to ensure a balanced representation of all main areas of research and most important projects. Valuable input was received, among others, from Professor John Polak, professor on transport demand and head of the Centre for Transport Studies, and from Dr Jeremy Woods, lecturer in bio-energy.

The process of selecting projects and inviting speakers to present at the conference was therefore hybrid: some of the speakers were selected among those project coordinators who had filled out the questionnaire on the MOBIDAYS website and had expressed interest in presenting their projects at the conference, while others were directly approached based on the relevance of their projects even though they hadn't registered on the MOBIDAYS website.

The final selection of projects to be presented at the conference was based on a number of elements, the overarching criteria being that of covering as broadly as possible the topic of infrastructures for sustainable mobility within the limited time available. For this reason, projects presented at the conference included one which dealt with different types of infrastructures for sustainable mobility being implemented in various European cities (project NICHES), a major hydrogen infrastructure project (project ZERO REGIO) and 3 projects covering the most important biofuels currently being deployed, respectively bio-ethanol (project NILE), biogas (project BIOGASMAX) and biodiesel (project Innovative Biodiesel). The conference sessions were chaired by hydrogen and bioenergy experts from Imperial College, and a panel discussion was also organised at the end in order to further stimulate discussion with the public.

| Name             | Institution                                              | Institution quarters | Projects<br>presented | Title of presentation                                          |
|------------------|----------------------------------------------------------|----------------------|-----------------------|----------------------------------------------------------------|
| Leire Iriarte    | POLIS                                                    | Belgium              | NICHES                | Mainstreaming urban<br>transport innovation                    |
| Dr Ashok Rastogi | Becker Technologies,                                     | Germany              | ZERO REGIO            | Hydrogen<br>infrastructure<br>development and<br>demonstration |
| Mr Raphael Slade | Imperial College London,                                 | United Kingdom       | NILE                  | Bioethanol in the EU:<br>the NILE project                      |
| Ms Sanne Mohr    | ENGVA (European Natural Gas<br>Vehicle Association), the | Netherlands          | BIOGASMAX             | Biomethane for urban<br>transport                              |

| Prof Manfred<br>Wörgetter | Bundesanstalt für Landtechnik, | Austria | Innovative<br>Biodiesel | Searching for the<br>"ideal" biodiesel |
|---------------------------|--------------------------------|---------|-------------------------|----------------------------------------|
|                           |                                |         |                         |                                        |

The conference was widely advertised, mostly by email and on websites, to a large number of potentially interested attendees internationally. Participants to EC-funded projects were adequately targeted; however efforts were particularly made to reach potentially interested people in London and the UK, since they were thought to be more likely to be able to attend the conference. A non-exhaustive list of mailing lists and websites which were used for this purpose is here given:

- MOBIDAYS mailing list with all available email addresses of coordinators of relevant ECfunded projects (mostly FP5 and FP6)
- HFP (European Commission's hydrogen and fuel cell technology platform) website
- Fuel Cell Today website this is a leading information source on the fuel cell industry
- H2NET UK hydrogen and fuel cell network mailing list, including a large number of academic and industrial organisations
- UK Energy Institute (EI) chartered professional organisation, with more than 13,500 individual and 300 organisation members
- UK Low Carbon Vehicle Partnership (LowCVP)
- London Hydrogen Partnership (LHP)
- Imperial College fuel cell network

As a result of the wide promotion of the conference, several emails of potential interested attendees were received, mostly from the UK but also from European and extra-European countries (such as the US and Australia), and a total of around 60 people pre-registered to attend the conference on the MOBIDAYS website.

However, due to fact that the conference was free to attend and there was no no-show fee charged for registered people not attending, several people who had pre-registered on the website (and in some cases also been directly in touch by email confirming their interest in the conference) eventually did not turn up. At the same time, a number of people also came on the day who hadn't previously registered on the project website, this not being a strict requirement for attending the conference. As a result, attendance to the conference was around 70 delegates, from industry, consultancy and academia. Most of the delegates were from the UK, although there were a number of overseas delegates as well. Attendance numbers were overall good, but the organisers were hoping for a higher turnout. The discrepancy between the extensive promotion of the event and relatively limited number of attendees can be explained by the growing number of conferences on sustainable mobility, alternative fuels and similar themes, some of which taking place on similar dates.

By looking at the list of people who attended the conference the following can be inferred:

- A good representation of UK industry and consultancy shows that there is interest among them in finding out more about EC-funded programmes and their outcomes
- Students were also a significant part of the audience, thanks to the event being free to attend
- Most of the delegates were from the UK, which was largely expected as, despite the conference being free of charge, attendees had to pay for their travel expenses.
- Despite repeated invitations, no representatives of London and UK governments attended. This was probably due to the fact that government officials are significantly involved in internal and national programmes and events on sustainable mobility, and didn't have particular incentives to attend a conference such as the one we had organised.
- Finally, apart from the invited speakers and panellists, no representatives of EC-funded project consortia attended the meeting. This was clearly a rather undesirable outcome since

this conference was organised with the idea of providing a venue for discussing outcomes of EC funded research on infrastructures for sustainable mobility in general, and not just the outcomes of the selected project which were presented there. However, due to the fact that no EC officials attended and that this event was not formally endorsed by the EC as one that partners of EC-funded projects had to attend, there was little incentive for partners to come; this is particularly true if we consider that participants of already completed EC-funded projects would have had no budget to cover travel expenses, and that for participants of still ongoing projects this meeting would have added to a busy travel schedule such as that often demanded by EC-funded projects.

## Conference outcomes

Selected general messages which are worth reporting from the conference are the following:

- EC investment on hydrogen and biofuels research has been steadily growing over time and many key areas are now covered
- However, projects have also been growing in size (i.e.: number of participants) and this
  posed problems; in particular, there is a distinct perception that large projects have proved
  less effective than smaller ones in developing original research
- For the same reason, projects are often not followed up and this limits their potential to generate practical results (it must be pointed out however that the review of projects we have carried out has partially contradicted this statement, as we have come across a number of projects that were following up from successful previous projects)

Selected messages from the conference which are specific to the theme of infrastructures for sustainable road transport are the following:

- Due to the fact that biofuels for transport (and particularly biodiesel and conventional bioethanol) are increasingly being commercialised, there is generally good potential for these projects to generate practically significant results in the near to medium term
- Despite EC-funded research is aiming to broaden the range of feedstock for biofuel production available in the EU, it is still unclear whether production targets will be met without significant imports
- Sustainability of biofuels remains an issue, and much research is still needed
- Based on the experience of hydrogen infrastructure demonstration projects, it is important to actively involve local authorities in the future (e.g.: as project partners) in order to avoid major authorisation problems (however, this has proved a problem so far but may not be a problem in the future, as the cumulative number of demonstration projects grows and regulation, codes and standards are developed accordingly).
- Apart from the many technologies still in the R&D phase, some hydrogen infrastructure technologies are being tested with interesting results

## **1.5.3 Projects analysis**

Strictly linked to the project selection discussed in Section 5.1, a critical review of projects in the area of infrastructures for sustainable mobility was carried out starting from the early months of the project MOBIDAYS. One output of this review is Deliverable 9 "Brochure about infrastructures for sustainable mobility". Building on Deliverable 9, final findings of this review are summarised below.

Initially we provide a brief discussion of the objectives, targets and, where available, results of the 32 projects we have selected; projects are grouped based on relevant themes, such as fuel types and main production routes. A tabular overview of these projects follows, where the potential for commercialisation of the technologies they have developed and their potential contribution to sustainability of road transport are ranked and qualitatively assessed.

## Technologies for production of biofuels for road transport

Energy from biomass can be used in a number of applications, ranging from heating, electricity generation, combined heat and power generation as well as transport. Numerous EC-funded projects have focused on the development of technologies to enhance production, processing and conversion of biomass resources for energy uses, thus including transport fuel production.

Biofuels for transport can be produced from different types of biomass feedstock; however, the same feedstock can often be used for other energy applications as well. More generally, due to the many overlapping pathways available, it is not always possible to clearly distinguish biomass feedstock and technologies relevant to the production of biofuels for transport from those that are relevant to other energy uses. Similarly, it is not always possible to clearly identify biomass production, treatment and conversion research which is only relevant to the production of biofuels for transport.

Here we discuss EC-funded projects on the production of biofuels using a range of different feedstock and routes. Most of these projects are directly aimed at producing biofuels for transport applications, such as biodiesel, bioethanol and biogas; however, some projects are discussed which are mainly aimed at other energy applications but are also relevant to the transport sector.

## Energy crops for biofuels production

A number of projects have been funded under FP5 and FP6 on feedstock for biofuels production. Some of these investigate the possibility to introduce new energy crops in Europe which can be used as a feedstock for the production of biofuels for transport.

For example, the 18-month project ECHI-T investigated the possibility to produce biofuels such as bioethanol (but also bio-methanol and bio-hydrogen) from sweet sorghum in Europe; this is a crop commonly cultivated in China but not in Europe. Although a full techno-economic and market analysis was not possible within the scope of the project, it demonstrated that the cultivation of sweet sorghum as an energy crop in Europe is feasible and may be beneficial as a complement to more traditional as well as other innovative feedstock for biofuels; if adopted, sweet sorghum could also allow to increase the utilisation rate of bioethanol production plants thanks to its complementarities to energy crops such as sugar beet.

Of particular interest is the 45-month FP5 project BIOENERGY CHAINS. As opposed to many previous projects only looking at specific aspects of energy crop cultivation, processing or conversion into biofuels, this project has the overall objective of defining and evaluating complete bioenergy chains from biomass production to thermochemical conversion for the production of valuable energy products. Four different crops, carefully selected to provide a year-round availability of raw material, were cultivated in small and large fields in Greece, Spain, Italy and France. The crops were then fully characterised and subjected to a comprehensive test programme of combustion, gasification and fast pyrolysis. The complete chains were evaluated in technical, environmental and economic terms in order to identify the most promising combinations of biomass resources and technologies.

## Biofuels production from waste

Apart from energy crops of various types and compositions, a potentially very important feedstock for the production of biofuels are wastes, such as the organic fraction of municipal solid waste (MSW), forestry and agricultural residues, agro-industrial waste and so on. There is a wide range of wastes that could potentially be used as a feedstock for biofuels production and equally numerous are the technologies potentially required for their treatment, conversion and purification. Several projects have been funded by the EC which look into the possible use of different types of wastes and of alternative technologies for their conversion.

The DIPROWASTE is a 24-month project investigating ways of enhancing biomethane production from anaerobic digestion of urban, agricultural and industrial organic waste by pretreating the feedstock. The project has demonstrated that ohmic heating pre-treatment can enhance the production of biogas and is economically viable. The pre-treatment technology developed as part of the project is currently being commercially exploited by the project partners for application with certain industrial and agricultural wastes.

Another interesting project focusing on biofuels-from-waste production technology is the 36month CATLIQ project; this studies an innovative catalytic process that produces a range of fuels (methane, hydrogen, alcohols) from liquid biomass waste such as sewage sludge and manure. One particularly interesting aspect of the project is that the technology under study should allow using aqueous biomass for energy purposes more cheaply and more flexibly than currently established processes. The project aims to develop this technology to a point where it becomes commercially viable.

The 48-month BIOGASMAX project aims to promote the large-scale adoption of upgraded biogas (biomethane) produced from waste as a renewable fuel for transport. Biomethane can be produced from treatment of different types of waste, such as sewage sludge, food waste and organic municipal sold waste, which requires significant treatment prior to disposal anyway. Biogas production improves the environmental efficiency of the waste treatment process while providing renewable, low-carbon and secure fuel for transport. Biomethane is similar to natural gas, therefore it can be transported using the extensive natural gas grid and used in CNG-powered vehicles.

The BIOGASMAX project builds on existing activities in municipal areas in the EU and carries out additional research, development and demonstration activities aimed to achieve the following objectives:

- Prove the technical reliability, cost-effectiveness, environmental and social benefits of biogas as a transport fuel
- Perform large-scale demonstrations to optimise industrial processes, experiment and benchmark new and near-to-market techniques and expand the biogas vehicle fleet
- Identify and assess ways of removing technical as well as non-technical barriers to biogas use in transport
- Disseminate knowledge and best practices in order to increase market acceptance of biogas fuel

The project started in January 2006 and will finish in December 2009. It involves demonstration activities in 5 European cities: Lille (France), Goteborg (Sweden), Stockholm (Sweden), Haarlem (The Netherlands), Rome (Italy), Berne (Switzerland); the regions Lombardy (Italy), Torun and Zielona Gora (Poland) are also involved in the project, mainly as beneficiaries of knowledge transfer from the other partners. For each of these demonstration sites quantitative objectives have been set in terms of the amount of biogas to be produced, upgraded and distributed and on the number of vehicles that will run on this fuel. In particular, in Lille the plan is to expand the production of biomethane at the Organic Recovery Centre to up to 4 million m<sup>3</sup>, to inject this in the gas grid and to optimise waterway transport of waste. In Sweden (Goteborg and Stockholm) research will focus on optimising production and upgrading processes, also using new feedstock types, and improving transmission and distribution systems. In Bern and Rome the scale of biogas production and upgrading will increase, and the quality of the gas will be analysed and monitored.

The 36-month GASASH project has the overall objective to develop sustainable and economic systems for the management of ashes originating from biomass/waste gasification and ensuing gas cleaning process. The primary objective is to reduce ash volume and improve ash quality. The improvement of ash quality enhances the potential for their utilisation/recycling as a raw material for other processes. One of the key factors limiting further utilisation of fly ash from gasification is their carbon content. An essential part of the ash quality improvement and ash volume reduction is the improvement of carbon conversion, which also results in higher conversion efficiency of the gasification process itself.

#### **Biodiesel** production

Biodiesel is currently the most widespread renewable fuel for transport in Europe and is still growing fast. However, there is scope for further developing technologies for its production; in particular, production can be made more economical and flexible for example by broadening the range of usable feedstock.

The 36-month project BIOCAT aimed to develop an efficient technology for the conversion of biomass to liquid bio-oil, which can be used to produce biodiesel. Biomass pyrolysis is the most promising process for the production of renewable liquid fuels; however, large-scale applications of this technology are not foreseen in the short term, mainly due to the high cost of upgrading liquid bio-oil for its effective handling and processing as a renewable fuel. The BIOCAT project focused on catalytic biomass flash pyrolysis (CBFP), an innovative technology which, using new porous catalysts and novel reactors, allows the conversion of various biomass feedstock and its catalytic upgrading into high quality bio-oil in the same reactor.

Although several other projects address fast pyrolysis of biomass to produce bio-oil, which can be either directly used for heat generation or refined and used as a transport fuel (biodiesel), the 30-month BIOTOX project is unique because it investigates the toxicity and eco-toxicity of a wide range of bio-oils from different processes and temperatures. Expected results include an assessment of the risk involved for human health and the environment and the definition of best practices for the production of bio-oil; the project also aims to contribute to reducing production costs and therefore making bio-oil from pyrolysis more competitive.

The Local and Innovative Biodiesel project aims to address the arising barrier of shortage of feedstock for biodiesel production and its competition with food uses. The project considers 25 different types of feedstock for biodiesel production besides rapeseed and soybean; considered feedstock also includes used vegetable oils. Biodiesel is produced on a laboratory scale from all these different types of feedstock, and the resulting biodiesel is analysed in order to assess whether or not it meets the necessary specifications. A selection of 6 different types of biodiesels out of the 25 is then tested for emissions and endurance in an internal combustion engine. The results of the project suggest that, although some of the biodiesels produced do not entirely meet current FAME specifications, their properties could be adjusted in order to meet the needs of the automotive industry. Based on these results, none of the feedstock type assessed can be excluded; this means that, using these types of feedstock, the current feedstock base for biodiesel production could be significantly broadened, both in the EU and worldwide.

#### **Bioethanol production**

Bioethanol for transport currently has a market share smaller than biodiesel; nevertheless it is growing fast in Europe and, in order for this trend to continue, conventional production pathways will have to be replaced by innovative technologies and more sustainable feedstock. In particular, producing bioethanol from lignocellulosic feedstock appears to be a promising route for the future; however, costs are still high and various parts of the process need to be optimised for it to

become competitive. Different ways of reducing bioethanol costs have been explored in the EC-funded projects here discussed.

The 40-month project TIME aims to improve the design and performance of key steps in the lignocellulose-to-ethanol process by focusing on pre-treatment, enzyme development and increased process integration. This will contribute to improving overall system efficiency and cost effectiveness and thus reduce the cost of producing ethanol by 10-20% in the medium to long term. The FERMATEC project developed a modular fermentation unit for continuous ethanol production. Compared with traditional units, it will decrease ethanol production costs to a minimum of 20% and increase bioethanol production yield to approximately 25 g EtOH/1.h.

The 48-month project NILE aims to propose the best process for a cost-effective production of bioethanol from lignocellulosic biomass to be used in combustion engines. The project is developing, investigating and evaluating new technologies for efficient conversion of lignocellulose to bioethanol. These technologies will be verified using a unique and fully integrated pilot plant providing reliable data for global socio-economic and environmental assessments and for the design of a future demonstration unit. The activities of NILE aim to overcome critical hurdles in process development. Key technology issues are:

- decreasing the cost of enzymatic hydrolysis of lignocellulose to fermentable sugars using new engineered enzyme systems;
- removing current intrinsic limitations in the conversion of fermentable sugars to ethanol;
- validating the engineered enzyme systems and yeast strains in a fully integrated pilot plant. Validation includes all process steps and recycling of process streams;

The project mobilises the critical mass of end-users and world-leading expertise necessary to improve the bioethanol production from the lignocellulosic biomass chain. By its integrated structure, NILE supports the development of research activities in close connection with industrial processes, their validation, their technical and socio-economic assessments, their dissemination as well as training activities.

## Hydrogen production from biomass (bio-hydrogen)

While currently used biofuels for transport applications are biodiesel, bioethanol or biomethane, in the future the biomass feedstock that is used today to produce these fuels may also be utilised to produce hydrogen (BTH, or biomass-to-hydrogen). Moreover, processes for the production of innovative biofuels such as BTL (biomass-to-liquid fuels) often involve as an intermediate step the production of a hydrogen-rich gas. So there are significant overlaps and complementarities in technologies and processes for the production of innovative biofuels and of hydrogen. Various projects have been funded by the EC to advance these technologies; these are discussed here.

The 36-month AER-GAS project aimed to develop a new, efficient and low-cost single-step gasification process (Absorption Enhanced Reforming, AER) for clean biomass conversion into a hydrogen rich gas (H<sub>2</sub> conc. > 70 vol. %) with low tar content that is suitable for both direct use in fuel cells and fuel synthesis. Specific objectives of the project were: the development and selection of efficient catalytic CO<sub>2</sub> absorbent bed materials with improved mechanical and chemical stability for the AER process; and, the design of an AER biomass plant with investment costs less than 800  $\epsilon$ /kW and energy efficiency for H<sub>2</sub> production higher than 75%. The project, now completed, obtained very encouraging results, to the extent that a second phase of the project has been funded, AER-GAS II, in order to further develop this technology towards market viability; AER-GAS II started in January 2006 and will last 3 years. The results achieved in the first phase of AER-GAS can be summarised as follows:

- The 8 MW pilot plant, operated continuously for the gasification of wood, generated a gas with ca. 75%  $H_2$ 

- The raw gas produced showed low tar content, with a minimum achieved of  $0.2 \text{ g(tar)/Nm}^3$
- The CO<sub>2</sub> absorbent material used as reactive bed material showed high mechanical and chemical stability; this was achieved by developing methods to improve stability based on coating and on mechanical and thermal pre-treatment
- The operation of the pilot plant also allowed full characterisation of the operating conditions of the process

Overall, the results obtained show that the gas produced is not only suitable for combined heat and power generation, but also for production of  $H_2$  and of Substitute Natural Gas (SNG) for transport applications, hence the relevance of this project to MOBIDAYS. The composition of the gas produced can be controlled by both choice of process conditions and by downstream upgrading.

The 52-month project SUPERHYDROGEN addresses the production of pure hydrogen from biomass and waste using supercritical water (SCW). The main objective of this project is to develop the innovative SCW-gasification process for cost-effective ( $<12 \notin/GJH_2$ ) conversion of wet biomass and waste into clean, renewable, compressed hydrogen with an energy efficiency to pure hydrogen exceeding 60%. Integrated parts of the SCW process development are: the development of a preparation method to convert wet feedstock of different origin into a high-solids content (up to 30% wt moisture), pumpable slurry; the development of a multi-functional, catalytic membrane reactor to convert CO and CH<sub>4</sub> (>70% conversion) to hydrogen, and simultaneously separate the hydrogen (purity > 98 vol%) from the gas. In the short term the technology may also be used with minor adaptations to produce Substitute Natural Gas (SNG) instead of hydrogen.

The 24-month project BIO-HYDROGEN aims at the development of a cost effective biogas reforming system (6 kW hydrogen) for decentralised application with biogas from agricultural biogas plants, municipal waste-water treatment plants and landfills. The main objective is the development of a reformer system which exhibits a better compatibility with biogas and hence an improved efficiency than conventional natural gas reformers.

CHRISGAS is a 60-month project which aims to demonstrate an energy-efficient and cost effective method to produce hydrogen-rich gases from biomass, which can be transformed into renewable automotive fuels such as FT-diesel, DME and hydrogen. This syngas-production process is based on steam/oxygen-blown gasification of biomass, followed by hot gas cleaning to remove particulates, and steam reforming of tar and light hydrocarbons to further enhance the hydrogen yield. The process was originally planned for demonstration at Värnamo, Sweden, after modification to the world's first complete IGCC demonstration plant for biomass; however, discontinued funding by the Swedish Energy Agency seriously delayed plans, to the extent that full-scale demonstration of the technology will not be possible before the end of the project. Nevertheless, parallel R&D activities covering the whole value chain from biomass to syngas have been carried out successfully so far. These include: feedstock biomass logistics; biomass drying integration; pressurised fuel feeding, gasification, hot synthesis gas characterisation; high temperature filtration/cleaning; catalytic steam reforming and shift gas catalyst characterisation. This will all lead onto the next phase: conversion of gas into motor fuels (Biomass to Liquids, BTL).

More recently the 60-month project HYVOLUTION is developing a 2-stage bioprocess for the cost-effective production of pure hydrogen from biomass by a non-thermal process which combines thermophilic and phototropic fermentation. The project deals with the whole chain from biomass to hydrogen, starting from the necessary pre-treatment technologies for optimal biodegradation of energy crops and bio-residues, to the fermentation reactors and ending with the cleaning of the gas generated by the process.

## Hydrogen production by reforming of hydrocarbon feedstock

Reforming of natural gas is the most commonly used and economical technology for large-scale hydrogen production. Although conventional natural gas reforming is a well established technology, more advances alternatives are also being investigated. Here EC-funded projects investigating advanced reforming technologies are discussed.

The objective of the NEMESIS project is to develop a small-scale, fuel flexible hydrogen generator that is capable of working with liquid and gaseous hydrocarbon feedstock. An existing, state-of-the-art small-scale, on-site hydrogen generator for decentralised applications is extended to a wider range of fuels and significantly upgraded by introducing advanced separation technologies, new innovative materials and cost-effective and highly efficient sub-components. Operation is demonstrated with natural gas and low sulphur diesel.

The SOLREF project aims to develop an innovative 400 kW<sub>th</sub> solar reformer for several applications, such as hydrogen production or electricity generation. Depending on the feed source for the reforming process,  $CO_2$  emissions can be reduced significantly (up to 40% using NG), because the needed process heat for this highly endothermic reaction is provided by concentrated solar energy.

The SOLHYCARB project addresses the development of an unconventional route for potentially cost effective hydrogen production by concentrated solar energy. The novel process thermally decomposes natural gas (NG) in a high temperature solar chemical reactor. Two products are obtained: a  $H_2$ -rich gas and a high-value nanomaterial, carbon black (CB). Therefore  $H_2$  and marketable CB are produced using renewable energy.

## Hydrogen production by electrolysis

Electrolysis is a very flexible technology for hydrogen production; it can be used everywhere electricity is available and, due to its modularity, is very easy to scale up. However, producing hydrogen from electrolysis is currently very expensive and research efforts are being devoted to making electrolysers cheaper and more efficient.

HYSTRUC is a 42-month project developing an innovative 30 bar pressure electrolyser in the MW power range, based on a new concept for pressure electrolysers. Pressure electrolysers at present are complicated, require much operational energy, are expensive and susceptible to failure. The central innovation of the concept of this project is that all pressure-carrying components are placed within one single pressure vessel. The technical simplicity makes energy consuming auxiliary components obsolete, improves operational safety and reduces costs.

The GENHYPEM project is related to the electrolytic production of hydrogen from water, using proton exchange membrane (PEM)–based electrochemical generators. The specific objectives of the project are: to develop alternative, low-cost membrane-electrode assemblies and stack components with electrochemical performances similar to those of state-of-the-art systems; to develop an optimised stack structure for high current density (1 A cm<sup>-2</sup>) and high pressure (50 bars) operation for direct pressurized storage; to develop an automated and integrated electrolysis unit allowing gas production from intermittent renewable sources of energy such as photovoltaic-solar and wind.

The project Hi2H2 is devoted to advancing the Solid Oxide Fuel Cell (SOFC) technology used in electrolysis mode, called "Solid Oxide Electrolyser Cell" or alternatively "Solid Oxide Electrochemical Converter" (SOEC). This technology has the potential to become an efficient and

cost-effective way to produce hydrogen from electrolysis. Because the water splitting process is endothermic, the electricity needed for electrolysis can be significantly reduced if the production of hydrogen takes place at high temperatures (700-1000°C). In addition, electrode kinetics are much faster at high temperature, which reduces electrode polarisation. Noble metal catalysts are not required and higher current densities can be obtained compared to existing low temperature electrolysers.

## Hydrogen production from solar energy

There are essentially two routes to produce hydrogen from water using solar energy directly (i.e.: without converting it into electricity first): these are artificial or biological photosynthesis and thermochemical water decomposition. Both routes are researched by EC-funded projects.

The project SOLAR-H aims to develop two methods of producing hydrogen from water and solar energy; the first one consists in developing and testing man-made biomimetic systems; the other involves identifying and then, by molecular biology, improving the most suitable hydrogen producing photosynthetic micro-organisms (green algae and cyanobacteria). Research focuses on technologies in the very early phase of development or not yet existing; the uncertainty involved in this research is high but the long term potential impact that this may have is very significant.

The aim of the HYDROSOL-II project is to develop and build an optimised pilot plant (100 kW<sub>th</sub>) for solar hydrogen production via an entirely novel, two-step thermochemical water-splitting process. The plant will be an advanced innovative solar thermal reactor consisting of monolithic ceramic honeycombs coated with active redox pair materials. The feasibility of this concept had already been demonstrated in the previous project HYDROSOL.

Hydrogen thermo-chemical cycles are processes where water is decomposed into hydrogen and oxygen via chemical reactions using intermediate elements which are recycled. These cycles have the potential of achieving a better overall efficiency than electrolysis and hence to reduce the cost of hydrogen production. The required energy for the process can be provided either by nuclear or by solar energy. Beyond that, hybrid solutions including solar and nuclear energy input are conceivable and desirable, if the production requires a continuous supply of heat. The objective of the HYTHEC project is to investigate the effective potential for massive hydrogen production using the Sulphur-Iodine (S\_I) thermochemical cycle and to compare it with the Hybrid Sulphur cycle, also called the Westinghouse cycle. The project aims to improve the fundamental knowledge and efficiency of the S\_I cycle  $H_2$  production step, and to investigate a solar primary energy source for the  $H_2SO_4$  decomposition step which is common to both cycles.

## Hydrogen purification, storage and transport

Most hydrogen production processes discussed so far need to be followed by appropriate purification steps, to remove impurities and contaminants which may be present in the hydrogen stream. For use in fuel cell vehicles very pure hydrogen is needed, thus the importance of fuel purification. Moreover, particularly when hydrogen is produced centrally from fossil feedstock, efficient  $H_2/CO_2$  separation technologies are needed in order for the  $CO_2$  to be captured and sequestered. Apart from hydrogen purification, research is also needed in the area of hydrogen storage, compression and transport technologies, in order to enable effective hydrogen transmission and distribution.

Commonly used technologies for hydrogen purification are Pressure Swing Adsorption (PSA) and selective membranes. Using a PSA process is possible to recover high purity hydrogen (>99.99%) from e.g.: methane reforming; the amount of hydrogen recovered is usually in the range of 80 to 93% of total hydrogen produced. A typical PSA waste gas stream is at relatively low pressure

(~1.5atm) and temperature (~30 °C) and has usual composition of 30-40% H<sub>2</sub>, 50-60% CO<sub>2</sub>, 10-25% CO and CH<sub>4</sub>. Economic recycling of this stream is not an alternative since the entire stream must be compressed to the PSA feed pressure, and only a small amount of hydrogen can be recovered (40~50% of the recycled hydrogen). Furthermore, the CO<sub>2</sub> rich stream cannot be used for sequestration since it contains significant amounts of H<sub>2</sub> and CH<sub>4</sub>. The main goal of project HY2SEPS is the development of a hybrid membrane/PSA H<sub>2</sub>/CO<sub>2</sub> separation process which allows to enhance hydrogen recovery while also enabling the effective separation of CO<sub>2</sub> from the waste stream for subsequent sequestration.

Hydrogen storage is necessary not only on-board vehicles but also in various phases of the hydrogen transmission and distribution process. High-pressure compressed gas storage is energy intensive and liquid  $H_2$  storage even more so. Storing  $H_2$  in solid metal hydrides (MH) from which it can be readily recovered by heating is an alternative and safe, highly volume efficient storage method. Conventional MHs however suffer from low weight efficiencies and the challenge is to improve them to conform to specifications set by the practical applications. In response to these challenges, the 36-month HYSTORY aspires to advance the state-of-the-art in three MH classes and to develop hydrides based on lightweight, low cost elements with improved  $H_2$  storage properties. The final aim is to provide a storage technology that is attractive both economically and environmentally.

Another project developing advanced hydrogen storage materials is the HYMOSSES. This project focuses on comparing various options for cost effective, compact, and safe storage solutions, namely metal hydrides, nanostructured carbon materials and composite materials. Other activities within the project involve prototyping of vessels and tanks, fuel handling and production, and conducting life-cycle analysis and techno-economic analysis of the materials developed.

Hydrogen can be transported by truck (both as a compressed gas and as a liquid) and by pipelines. Building dedicated hydrogen pipelines is not economical until demand becomes sufficiently high. The project NATURALHY however explores the potential of using the existing natural gas system to deliver hydrogen. In particular, the project aims to determine the conditions under which the existing natural gas system can safely be used to transport mixtures of hydrogen and natural gas, and to develop innovative technologies for the separation of hydrogen from hydrogen/natural gas mixtures.

Finally, the 5-year project ZERO REGIO is a demonstration project in the framework of which hydrogen production, storage, transmission, distribution and end-use technologies have been designed, approved, built and tested. Of particular interest to us are the innovative hydrogen compression and transmission technologies which were developed and tested as part of this project; these consists of an ionic fluid compressor which is capable of compressing hydrogen to very high pressures with high energy efficiency, and a high pressure (1,000 bar) hydrogen transmission pipeline. The infrastructure is being tested with favourable results so far. Comparisons between hydrogen and natural gas transport and refuelling have given positive indications, and the infrastructure overall has worked well despite some minor technical issues. It appears that by-product hydrogen such as that available at the Infraserv plant is a good intermediate step to the build-up of a hydrogen production infrastructure; the refuelling site connected to the Infraserv plant has been dispensing an average of 20 kg (H<sub>2</sub>)/ month and the infrastructure is suitable to deliver significantly larger quantities of hydrogen as well. Assessment of technologies is still ongoing but results so far are encouraging.

Transport demand and infrastructure management; other technologies related to transport sustainability

As already mentioned above, in our analysis we have mostly focused on infrastructures related to the production, transmission and distribution of alternative transport fuels. However, we are aware of the importance of other technologies that address sustainability of road transport, such as those aimed at effectively managing travel and infrastructure demand.

Although, due to resource limitations and other constraints, we did not systematically review projects in this area, we have decided to review the 29-month project NICHES, which we considered particularly significant. This project did not focus on developing any specific technology for sustainable mobility. Instead it aimed at promoting a total of 12 particularly promising concepts for making urban transport of persons and goods more sustainable. These concepts have recently been developed and are currently being deployed in specific EU cities. The aim of the project is to support the large-scale deployment of these concepts in several EU cities, in order to move them from 'niche' to 'mainstream' concepts in urban transport policy. The 12 selected concepts are the following:

- 1) Urban lift-sharing services. Matching services that bring people travelling in the same direction together aiming to encourage individuals to share private vehicles for particular journeys (e.g.: liftshare in UK)
- 2) Public bicycles. Innovative schemes of rental or free bicycles in urban areas, which provide fast and easy access and can be used for daily mobility (e.g.: vélo à la Carte, Rennes, France)
- 3) Call-a-bus services. DRT schemes in public transport that adapt their itinerary and timetable to suit a particular transport demand (e.g.: Publicar, Switzerland)
- 4) Space management for urban delivery. Efficient use of infrastructure in urban areas taking into account the specific needs of urban goods delivery (e.g.: multiuse lane, Barcelona, Spain)
- 5) Inner-city night delivery. Delivery to retailers and shops in the inner city area during the night hours when the city is quiet and inactive (e.g.: night delivery, Dublin, Ireland)
- 6) Alternative solutions for home delivery. To organise the «last mile» processes efficiently; alternative delivery locations, time windows for the delivery and alternative redelivery strategies are considered if the consignee is not at home (e.g.: DHL packstation, Germany)
- 7) Policy strategy to deploy AFV in the private sector. Provide long term stability for the actors at the AFV market and involve new consumer groups (e.g.: clean vehicles in Stockholm, Sweden)
- 8) Biogas in captive fleets. The use of biogas from waste water or from solid biological material as fuel; contributes to reducing the waste problem and increasing the competitiveness of rural areas. This locally produced biogas is enough to feed city fleets, which allows to have a reduced number of fuelling stations and therefore introducing it steadily (e.g.: Swensk Biogas AB, Linköping, Sweden)
- 9) Joint procurement of AFVs. Gathering a substantial amount of buyers to overcome the uncertainty of the demand by the manufacturers and encourage the introduction of new models (e.g.: joint procurement of Ford Focus FFV, Sweden)
- 10) Transportation Management Associations (TMAs). Non-profit public-private associations forming partnership with business and local government that offer commuter information and mobility services (e.g.: ride On, USA)
- 11) Local taxes or charges ring-fenced for transport. Taxes or charges at local level that aim at benefiting the urban transport system as a whole by the reinvestment of the collected revenues into the local transport system (e.g.: congestion charging in London, UK)
- 12) City-wide campaigns using marketing and branding. Schemes presenting awareness raising events at a city level in close cooperation with public and private bodies and that are run on a permanent basis. The aim is to involve citizens and raise awareness on the various

mobility opportunities proposed within the city and its outskirts (e.g.: big wheel campaign, Nottingham, UK)

The project, now completed, has generated numerous policy and research recommendation aimed at promoting sustainable mobility in urban areas; due to its success, the project is currently being followed up by the FP7 NICHES+ project.

A tabular overview of all selected projects follows, where the potential for commercialisation of the technologies they have developed and their potential contribution to increasing sustainability of road transport are qualitatively assessed and ranked. In particular, the potential for commercialisation of the results of each project is ranked as "low", "medium" or "high", based on the available information on the project's objectives and achievements. The potential contribution that the project results can make to road transport sustainability is also ranked similarly: in the table "\*" stands for low, "\*\*" for medium and "\*\*\*" for high; environmental, social and economic sustainability are assessed and ranked separately, based on the definition of sustainable mobility discussed in Section 2 above.

| Project<br>Acronym  | Consortium<br>composition                                                                                                                                          | R&D focus                                                                                                                                                                                      | Potential for commercial exploitation of results                                                                                                                                                                                                                                                        | Potential cont<br>sustaina                                                                                                                                                               | Potential contribution to road transpo<br>sustainability                                                                                   |                                                                                                                                                                                         |
|---------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                     |                                                                                                                                                                    |                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                         | Environmen tal                                                                                                                                                                           | Social                                                                                                                                     | Economic                                                                                                                                                                                |
| AER-GAS             | Mostly formed by<br>research institutes<br>and universities,<br>from a total of 6 EU<br>countries. Several<br>representatives of<br>Austria and<br>Germany         | Development of an efficient,<br>low-cost, one-step adsorption<br>enhanced reforming process<br>(AER) for biomass which is<br>capable to also produce<br>hydrogen and SNG for<br>transport uses | High<br>Efficient, low-investment cost AER<br>plant design<br>Catalytic CO <sub>2</sub> absorbent bed<br>materials with improved mechanical<br>and chemical stability for AER<br>process                                                                                                                | ***<br>Production of<br>transport<br>fuels from<br>renewable,<br>low-carbon<br>energy<br>sources                                                                                         | ***<br>Production of<br>transport<br>fuels from<br>local<br>feedstock<br>increases<br>energy<br>security                                   | ***<br>Developm<br>ent of<br>technologi<br>es with<br>wide<br>commerci<br>alisation<br>potential                                                                                        |
| BIOCAT              | 5 among research<br>institutes and<br>universities; 3<br>industrial<br>organisations. 4<br>partners out of 8<br>from Greece                                        | Catalyst Development for<br>Catalytic Biomass Flash<br>Pyrolysis Producing<br>Promising Liquid Bio-Fuels                                                                                       | Medium<br>Technology potentially promising but<br>current state of development not<br>known                                                                                                                                                                                                             | ***<br>Production of<br>transport<br>fuels from<br>renewable,<br>low-carbon<br>energy<br>sources                                                                                         | ***<br>Production of<br>transport<br>fuels from<br>local<br>feedstock<br>increases<br>energy<br>security                                   | ***<br>Developm<br>ent of<br>technologi<br>es with<br>wide<br>commerci<br>alisation<br>potential                                                                                        |
| BIOENERGY<br>CHAINS | Almost entirely<br>formed by research<br>institutes and<br>universities, from a<br>total of 8 different<br>EU countries                                            | Technical, socio-economic<br>and environmental<br>assessment of the whole<br>energy chain, from biomass<br>production to thermochemical<br>conversion, of a number of<br>energy crops          | Low<br>No hardware developed by this<br>project, however the assessment is<br>potentially important to inform future<br>developments of energy crops in<br>Southern Europe                                                                                                                              | **<br>Production of<br>feedstock for<br>renewable,<br>low-carbon<br>biofuel<br>production                                                                                                | ***<br>Production of<br>transport<br>fuels from<br>local<br>feedstock<br>increases<br>energy<br>security                                   | ***<br>Developm<br>ent of<br>valuable<br>energy<br>crops from<br>marginal<br>agricultura<br>I land                                                                                      |
| BIOGASMAX           | 31 partners from a<br>total of 8 countries;<br>half of the partners<br>are from Sweden.<br>Good balance<br>between industry<br>and other types of<br>organisations | R&D activities within this<br>project focus on improving<br>technologies for biogas<br>production, upgrading,<br>distribution and end-use in<br>road vehicles                                  | Medium<br>Although the project aims to promote<br>the commercial uptake of biogas<br>technologies and the R&D activities<br>carried out as part of it are key to<br>achieve this, it must be noted that<br>overall these technologies are not far<br>from being mature for<br>commercialisation already | ***<br>Production of<br>low-carbon,<br>renewable<br>fuel from<br>transport<br>from waste,<br>thus<br>addressing<br>two<br>important<br>environment<br>al problems<br>at the same<br>time | ***<br>Production of<br>renewable<br>fuels using<br>local<br>renewable<br>resources<br>contributes<br>to increasing<br>energy<br>security. | ***<br>Technolog<br>ies with<br>wide<br>potential<br>for<br>commerci<br>alisation.<br>Additionall<br>y,<br>recovering<br>energy<br>from<br>waste has<br>positive<br>economic<br>impacts |

#### Table 11 Analysis: infrastructures projects

|                | 7 industrial partners                                                                                                                       | Development and                                                                                                                                                                                                                                             | Modium                                                                                                                                                                                                                                                                                                                                                        | ***                                                                                                                         | ***                                                                                                      | ***                                                                                                                          |
|----------------|---------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------|
| HYDROGEN       | out of a total of 10.<br>4 partners from<br>Germany and 3<br>from Austria.                                                                  | construction of a stable and<br>cost-effective biogas<br>reforming unit (6kW H2), with<br>advanced and durable<br>catalysts and a biogas<br>upgrading unit for siloxanes<br>removal                                                                         | Reformer unit was successfully<br>tested with clean model biogas;<br>whether it was also tested with real<br>biogas is not known.<br>The siloxane removal unit was<br>successfully tested on a laboratory<br>scale<br>Research done in this project has<br>generated promising results and is<br>currently being followed up in the<br>FP6 project HYVOLUTION | Production of<br>renewable,<br>low-carbon<br>hydrogen for<br>transport                                                      | Production of<br>hydrogen<br>from local<br>feedstock<br>increases<br>energy<br>security                  | Developm<br>ent of<br>technologi<br>es with<br>wide<br>commerci<br>alisation<br>potential                                    |
| ΒΙΟΤΟΧ         | Partners are<br>research<br>organisations from 3<br>EU countries                                                                            | Assessment of toxicity of<br>pyrolysis oil (bio-oil) and<br>definition of best practices for<br>production and handling<br>Cost reduction of bio-oil<br>production                                                                                          | Low<br>The project did not involve major<br>R&D activities, however the<br>assessment is important to inform<br>future developers of bio-oil<br>production plants                                                                                                                                                                                             | Development<br>of best<br>practices in<br>liquid biofuel<br>production                                                      | Indirectly<br>impacts on<br>the<br>production of<br>transport<br>fuels from<br>local<br>feedstock        | Indirectly<br>impacts<br>on the<br>developm<br>ent of<br>technologi<br>es with<br>wide<br>commerci<br>alisation<br>potential |
| CATLIQ         | 3 partners for 3<br>different countries; 2<br>research and one<br>consultancy<br>organisations                                              | Catalytic liquid biomass (e.g.:<br>sewage sludge) conversion<br>into fuels for CHP and other<br>energy uses                                                                                                                                                 | Medium<br>Technology is directly aimed at CHP<br>and not specifically at transport fuels.<br>Moreover the current state of<br>development is not known                                                                                                                                                                                                        | **<br>Production of<br>transport<br>fuels from<br>renewable,<br>low-carbon<br>energy<br>sources                             | **<br>Production of<br>transport<br>fuels from<br>local<br>feedstock<br>increases<br>energy<br>security  | **<br>Developm<br>ent of<br>technologi<br>es with<br>wide<br>commerci<br>alisation<br>potential                              |
| CHRISGAS       | More than half of<br>the partners of this<br>large consortium are<br>from Sweden;<br>several industrial<br>organisations<br>involved        | Demonstrate an energy-<br>efficient and cost-effective<br>method of producing H2-rich<br>gases from gasification of<br>solid biomass. The H2-rich<br>gas can then be upgraded<br>and converted into renewable<br>transport fuels (FT-diesel,<br>DME and H2) | High<br>Project R&D activities are severely<br>delayed but have nevertheless<br>generated very promising results with<br>high potential for commercial<br>exploitation after 2010                                                                                                                                                                             | ***<br>Production of<br>transport<br>fuels from<br>renewable,<br>low-carbon<br>energy<br>sources                            | Production of<br>transport<br>fuels from<br>local<br>feedstock<br>increases<br>energy<br>security        | ***<br>Developm<br>ent of<br>technologi<br>es with<br>wide<br>commerci<br>alisation<br>potential                             |
| DIPROWAST<br>E | 3 partners from<br>Germany and 3<br>from the UK. 4<br>partners are<br>commercial<br>organisations                                           | Determine the best<br>combination of pre-treatment<br>methods to maximise the<br>production of fuel gas and<br>minimise post-treatment cost<br>from anaerobic digestion                                                                                     | High<br>Pre-treatment technology developed<br>in the project is being commercially<br>exploited by project partners                                                                                                                                                                                                                                           | *<br>Production of<br>fuel mostly<br>from<br>stationary<br>uses, but<br>potential<br>future use for<br>transport as<br>well | *<br>Production of<br>transport<br>fuels from<br>local<br>feedstock<br>increases<br>energy<br>security   | *<br>Developm<br>ent of<br>technologi<br>es with<br>commerci<br>alisation<br>potential                                       |
| ECHI-T         | 13 partners from a<br>total of 6 countries:<br>Italy, Germany,<br>Belgium, Sweden,<br>USA and China                                         | Techno-economic and market<br>assessment of energy crops<br>for the production of<br>bioethanol / ETBE in China<br>and Italy                                                                                                                                | Low<br>The project did not encompass major<br>R&D activities, however the<br>assessment carried out is important<br>to inform future developers of energy<br>crops in the EU                                                                                                                                                                                  | ***<br>Production of<br>transport<br>fuels from<br>renewable,<br>low-carbon<br>energy<br>sources                            | ***<br>Production of<br>transport<br>fuels from<br>local<br>feedstock<br>increases<br>energy<br>security | ***<br>Developm<br>ent of<br>valuable<br>energy<br>crops from<br>marginal<br>agricultura<br>I land                           |
| FERMATEC       | Half of the<br>consortium is made<br>of Portuguese<br>partners, and 6 out<br>of 10 are industrial<br>organisations                          | Development of a modular<br>fermentation unit for<br>continuous ethanol<br>production, in order to<br>decrease cost and increase<br>yields compared with<br>traditional units.                                                                              | Medium<br>New fermentation unit shows ethanol<br>production cost decrease of 20% and<br>increase of bio-ethanol production<br>yield to approximately 25 g EtOH/l.h.<br>Current status of development of the<br>technology and its possible<br>commercial exploitation is unknown                                                                              | **<br>Production of<br>renewable<br>transport<br>fuels at lower<br>costs                                                    | **<br>Production of<br>transport<br>fuels from<br>local<br>feedstock<br>increases<br>energy<br>security  | **<br>Developm<br>ent of<br>technologi<br>es with<br>commerci<br>alisation<br>potential                                      |
| GASASH         | Half of the<br>consortium partners<br>are from Finland,<br>and the majority of<br>the consortium<br>consists of industrial<br>organisations | Improvement of the<br>economics of biomass/waste<br>gasification by higher carbon<br>conversion and advanced ash<br>management                                                                                                                              | Medium<br>Commercialisation of the technology<br>development also depends on the<br>commercial uptake of biomass/ waste<br>gasification technologies                                                                                                                                                                                                          | *<br>Contributes<br>to making<br>the<br>production of<br>renewable<br>fuels more                                            | *<br>Contributes<br>to making<br>the<br>production of<br>fuels from<br>local                             | *<br>Contribute<br>s to the<br>developm<br>ent of<br>technologi<br>es with                                                   |

|                 |                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                   | economic<br>and with<br>lower<br>environment<br>al impact                                                                      | feedstock<br>viable                                                                                                                                  | commerci<br>alisation<br>potential                                                                                                        |
|-----------------|------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|
| GENHYPEM        | Consortium of 9<br>partners from a total<br>of 6 countries, with<br>a good balance<br>between industry<br>and academia/<br>research institutes | Development of low cost MEA<br>and prototypes of proton-<br>exchange membrane-based<br>water electrolysers for<br>hydrogen production                                                                                                                                                                                            | Low/ medium<br>The project has generated several<br>publications and 2 prototypes so far,<br>but large-scale commercial<br>exploitation of the system is not<br>expected in the short term        | **<br>Contributes<br>to the<br>production of<br>hydrogen<br>from<br>intermittent<br>(renewable)<br>sources on a<br>small scale | **<br>Contributes<br>to making<br>the<br>production of<br>fuels from<br>local<br>feedstock<br>viable                                                 | **<br>Contribute<br>s to the<br>developm<br>ent of<br>technologi<br>es with<br>commerci<br>alisation<br>potential                         |
| Hi2H2           | Consortium made of<br>research institutes<br>from 4 different<br>countries                                                                     | Development of high-<br>efficiency, low-cost planar<br>solid-oxide based high<br>temperature water<br>electrolyser<br>One of the objectives is to<br>demonstrate degradation of<br>less than 1% in 1,000 hours<br>on a small stack                                                                                               | Low/ medium<br>The project has generated several<br>publications, but large-scale<br>commercial exploitation of the system<br>is not expected in the short term                                   | ***<br>High-<br>efficiency,<br>cost effective<br>production of<br>hydrogen<br>from<br>renewable<br>energy<br>sources           | ***<br>Production of<br>renewable<br>hydrogen<br>from<br>diversified,<br>local energy<br>sources                                                     | ***<br>Developm<br>ent of<br>technologi<br>es with<br>high<br>potential<br>for<br>commerci<br>alisation in<br>the<br>medium/lo<br>ng term |
| HYDROSOL-<br>II | Consortium made of<br>5 partners, each<br>one from a different<br>country; good<br>balance between<br>industry and<br>academia                 | Development and testing of<br>an optimised 100kWth pilot<br>plant; further scaling up of the<br>technology and demonstration<br>of the system coupled with a<br>solar concentrator.<br>Development of a stable<br>support capable of at least 50<br>cycles in a row, and decrease<br>of temperature of the<br>regeneration step. | Medium/High<br>New support materials have been<br>developed and successfully tested.<br>Development and optimisation of the<br>reactor and its coupling with a solar<br>concentrator are underway | ***<br>Production of<br>renewable<br>hydrogen<br>from solar<br>heat                                                            | ***<br>Production of<br>vast<br>amounts of<br>hydrogen<br>from solar<br>energy,<br>which can<br>significantly<br>contribute to<br>energy<br>security | ***<br>Developm<br>ent of<br>technologi<br>es with<br>potentially<br>very wide<br>markets                                                 |
| HYMOSSES        | Consortium of<br>partners from 6<br>different countries,<br>with good balance<br>between industry<br>and academia                              | Improve carbon and metal<br>hydride materials for<br>hydrogen storage in order to<br>fulfill the needs of large scale<br>use of hydrogen                                                                                                                                                                                         | Medium<br>Detailed results of the project are not<br>known                                                                                                                                        | *<br>Adequate<br>storage<br>materials are<br>necessary to<br>enable the<br>large scale<br>use of<br>hydrogen                   | *<br>Hydrogen<br>has the<br>potential to<br>contribute to<br>increasing<br>energy<br>security                                                        | **<br>Hydrogen<br>storage<br>technologi<br>es have<br>potentially<br>wide<br>markets                                                      |
| HYSTORY         | 9 partners from 5<br>countries, with a<br>good balance<br>between industrial<br>and research<br>organisations                                  | Advancing the state of the art<br>of metal hydrides for<br>hydrogen storage and test<br>these novel materials in a<br>range of end-use applications                                                                                                                                                                              | Medium<br>Detailed results of the project are not<br>known                                                                                                                                        | *<br>Adequate<br>storage<br>materials are<br>necessary to<br>enable the<br>large scale<br>use of<br>hydrogen                   | *<br>Hydrogen<br>has the<br>potential to<br>contribute to<br>increasing<br>energy<br>security                                                        | **<br>Hydrogen<br>storage<br>technologi<br>es have<br>potentially<br>wide<br>markets                                                      |
| HYSTRUC         | Consortium of 3<br>industry partners<br>from 3 different<br>countries (Germany,<br>Norway and<br>Belgium)                                      | Development and<br>demonstration of an<br>innovative 30 bar low-cost,<br>small-size pressure<br>electrolyser in the MW power<br>range                                                                                                                                                                                            | Medium<br>Detailed results of the project are not<br>known                                                                                                                                        | **<br>Efficient,<br>cost effective<br>production of<br>hydrogen<br>from<br>renewable<br>energy<br>sources                      | **<br>Production of<br>renewable<br>hydrogen<br>from<br>diversified,<br>local energy<br>sources                                                      | **<br>Developm<br>ent of<br>technologi<br>es with<br>good<br>potential<br>for<br>commerci<br>alisation                                    |
| HYTHEC          | 6 partners from a<br>total of 6 countries.<br>Research<br>organisations are<br>prevalent                                                       | Development of the S_l and<br>hybrid sulphur<br>thermochemical cycle for<br>hydrogen production, by<br>means of computer simulation<br>and experimental work.<br>Assessment of industrial<br>scale-up aspects.                                                                                                                   | Medium<br>First step of the analysis of the cycle<br>and its scaling-up have been<br>completed, but only initial results are<br>publicly available so far                                         | ***<br>Potential for<br>efficiently<br>producing<br>hydrogen<br>from solar<br>energy                                           | ***<br>Production of<br>renewable<br>hydrogen<br>from<br>diversified,<br>local energy<br>sources                                                     | ***<br>Developm<br>ent of<br>technologi<br>es with<br>good<br>potential<br>for<br>commerci                                                |

|                                      |                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                     |                                                                                                                           |                                                                                                                                                                 | alisation                                                                                                                                                    |
|--------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|
| HYVOLUTION                           | 22 partners from 13<br>countries, evenly<br>distributed between<br>industry and<br>research/academic<br>entities                                                         | The main scientific objective<br>is the development of a 2-<br>stage bioprocess for the cost-<br>effective production of pure<br>hydrogen from biomass.<br>The main technological<br>objective is the construction of<br>prototype modules of the plant<br>which form the basis of a blue<br>print for the whole chain of<br>biomass to pure hydrogen. | High<br>This technology has the potential to<br>supply around 20% of hydrogen<br>demand in Europe. The project builds<br>on the results of the FP5<br>Biohydrogen project, and the<br>technologies here developed are<br>expected to be commercialised<br>starting from 2015                        | ***<br>Cost<br>effective<br>production of<br>large<br>quantities of<br>renewable<br>hydrogen                              | ***<br>Small-scale<br>production of<br>renewable<br>hydrogen<br>from local<br>energy<br>sources                                                                 | ***<br>Technolog<br>ies with<br>potential<br>for wide<br>commerci<br>alisation                                                                               |
| HY2SEPS                              | 7 partners from 6<br>different countries; 4<br>research and<br>academic<br>institutions, 3<br>industrial<br>organisations                                                | The main goal is the<br>development of a hybrid<br>membrane/PSA H2/CO2<br>separation process which will<br>be part of a fossil-fuel<br>decarbonisation process<br>coupled with hydrogen<br>production.                                                                                                                                                 | Medium/ high<br>Foreseen project achievements<br>include the development of improved<br>membranes and sorbent materials<br>and the simplification of PSA<br>operation in order to achieve more<br>effective H2 recovery and CO2<br>separation                                                       | **<br>Contributes<br>to the<br>production of<br>carbon-free<br>hydrogen<br>from fossil<br>sources                         | *<br>Indirectly<br>contributes<br>to increase<br>security of<br>supply by<br>enabling<br>fossil-fuel<br>based<br>hydrogen<br>production<br>pathways             | **<br>Technolog<br>ies with<br>significant<br>potential<br>for wide<br>commerci<br>alisation                                                                 |
| Local and<br>Innovative<br>Biodiesel | 12 partners from 7<br>countries; partners<br>are mostly research<br>institutes and local<br>authorities                                                                  | Research in this project<br>focuses on testing a number<br>of potential feedstock for<br>biodiesel production, beyond<br>the conventional ones. Work<br>includes lab-scale production<br>and testing in internal<br>combustion engines                                                                                                                 | Medium/ high<br>Biodiesel is already commercially<br>viable and its uptake is growing fast.<br>Research within this project may lead<br>to the use of new feedstock and<br>technologies for biodiesel production                                                                                    | **<br>Contributes<br>to increasing<br>the<br>production of<br>renewable<br>fuels for<br>transport                         | ***<br>Promotes<br>the use of<br>alternative<br>and local<br>feedstock for<br>biodiesel<br>production<br>not based on<br>food crops                             | ***<br>Develops<br>technologi<br>es for<br>biodiesel<br>production<br>with wide<br>potential<br>for<br>commerci<br>alisation                                 |
| NATURALHY                            | Very large<br>consortium of 40<br>organisations, the<br>majority of which<br>industrial. 12<br>countries are<br>represented, of<br>which the UK has<br>the most partners | The main objective is to<br>contribute to the preparation<br>for the hydrogen economy by:<br>i) using the existing natural<br>gas system as a catalyst for<br>change; ii) initiating the near-<br>future practical transition<br>towards the hydrogen<br>economy                                                                                       | Medium<br>The project should enable the<br>introduction of H2 in the natural gas<br>network in the short to medium term,<br>and also aims to develop membranes<br>for the separation of H2 from natural<br>gas at the point of use which will be<br>needed for the use of hydrogen in<br>fuel cells | *<br>Contributes<br>to the<br>development<br>of a large-<br>scale<br>hydrogen<br>economy                                  | *<br>Contributes<br>to marginally<br>increase<br>security of<br>supply in the<br>short term;<br>much higher<br>potential<br>contribution<br>in the long<br>term | *<br>Technolog<br>ies with<br>potential<br>for<br>commerci<br>alisation<br>by the<br>companie<br>s involved<br>in the<br>project                             |
| NEMESIS                              | 8 partners from 6<br>countries, equally<br>divided between<br>industry and<br>research                                                                                   | The main goal is to develop<br>innovative materials and<br>efficient sub-components that<br>can be integrated and used in<br>a novel fuel-flexible, small-<br>scale hydrogen generator                                                                                                                                                                 | High<br>The project starts from a commercial<br>product by Hexion and aims to further<br>develop it to make it fuel-flexible and<br>more cost effective                                                                                                                                             | *<br>Hydrogen<br>production<br>mostly from<br>fossil<br>sources and<br>small-scale<br>so CCS is<br>not an option          | **<br>Contributes<br>to energy<br>security by<br>enabling<br>flexible<br>hydrogen<br>production<br>from various<br>feedstock                                    | ***<br>Develops<br>technologi<br>es with<br>wide<br>application<br>and<br>commerci<br>alisation<br>potential                                                 |
| NICHES                               | The consortium<br>consists of 7<br>partners from s total<br>of 5 countries                                                                                               | The objective of the project is<br>to promote a selection of 12<br>concepts for sustainable<br>mobility, ranging from<br>demand and infrastructure<br>management to the promotion<br>of AFVs.                                                                                                                                                          | Low<br>The project in itself did not develop<br>technologies; it instead aimed to<br>promote existing sustainable<br>transport technologies from niches to<br>mainstream                                                                                                                            | Bringing the<br>considered<br>technologies<br>to<br>mainstream<br>could have<br>significant<br>environment<br>al benefits | Vverall the<br>technologies<br>considered<br>are aimed to<br>improve<br>mobility and<br>transport<br>services<br>without<br>making<br>these more<br>expensive   | Economic<br>benefits of<br>these<br>technologi<br>es are<br>variable,<br>as not all<br>of offer<br>significant<br>opportuniti<br>es to the<br>EU<br>industry |
| NILE                                 | 21 partners from 12<br>countries. Industry<br>and academia/<br>research<br>organisation are<br>evenly represented                                                        | The objective of this project is<br>to propose the best process<br>for a cost effective production<br>of clean bioethanol from<br>lignocellulose to be used in<br>combustion engines                                                                                                                                                                   | High<br>Although the large-scale commercial<br>development of bioethanol from<br>lingo-cellulosic biomass will not occur<br>in the short term, in the medium to<br>long term this route appears to be                                                                                               | ***<br>Contributes<br>to the<br>development<br>of viable<br>routes to                                                     | ***<br>Contributes<br>to stimulate<br>sustainable<br>rural<br>development                                                                                       | ***<br>Contribute<br>s to<br>extending<br>EU<br>leadership                                                                                                   |

|                    |                                                                                                                          |                                                                                                                                                                                                                                       | particularly promising and has<br>potentially very wide application both<br>in the EU and elsewhere                                                                                                             | low-carbon,<br>renewable<br>transport<br>fuels<br>production                                                                          | and has<br>positive<br>impacts in<br>terms of<br>European<br>land use                                                                              | in biofuels<br>to<br>bioethanol<br>as well: it<br>also<br>improves<br>competitiv<br>eness of<br>fermentati<br>on and<br>biotechnol<br>ogy<br>industry                                                               |
|--------------------|--------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| SOLHYCARB          | 11 partners from 7<br>countries; most<br>partners are<br>research institutes                                             | Development of a process<br>producing hydrogen and<br>carbon black from thermal<br>cracking of NG in a chemical<br>reactor using solar energy                                                                                         | Medium<br>Offers a potentially more<br>economically promising route for<br>hydrogen production from NG                                                                                                          | **<br>Makes<br>hydrogen<br>production<br>from natural<br>gas more<br>efficient by<br>using solar<br>thermal<br>energy                 | **<br>Contributes<br>to energy<br>security by<br>providing a<br>more<br>efficient way<br>of producing<br>hydrogen<br>from NG                       | **<br>Provides a<br>technolog<br>y for<br>significant<br>potential<br>for<br>commerci<br>alisation                                                                                                                  |
| SOLREF             | 8 partners from 7<br>countries, equally<br>divided between<br>industry and<br>research<br>organisations                  | Development of an innovative<br>solar reformer for methane<br>rich gases for the production<br>of hydrogen and/or electricity                                                                                                         | Medium/high<br>The project develops a small-scale<br>prototype and addresses scaling-up<br>of the technology up to a 50MWth<br>size                                                                             | **<br>Reduces<br>CO <sub>2</sub><br>emissions<br>associated<br>with the<br>reforming of<br>methane                                    | **<br>Contributes<br>to energy<br>security by<br>reducing<br>demand for<br>fossil fuels                                                            | **<br>Technolog<br>y with<br>wide<br>potential<br>for<br>commerci<br>alisation                                                                                                                                      |
| SUPER-<br>HYDROGEN | 7 partners, the<br>majority of which<br>from the<br>Netherlands.<br>Industry and<br>research partners<br>evenly balanced | Development of an innovative<br>supercritical water gasification<br>process for cost-effective<br>hydrogen production from<br>biomass and waste                                                                                       | Medium<br>Technology with good potential for<br>commercialisation, but current status<br>of development is unclear                                                                                              | ***<br>Production of<br>renewable<br>fuels using<br>renewable<br>resources<br>and waste                                               | ***<br>Uses<br>diversified,<br>low-value<br>local<br>resources,<br>thereby<br>increasing<br>security of<br>supply                                  | ***<br>Good<br>potential<br>for<br>commerci<br>alisation of<br>the<br>technolog<br>y                                                                                                                                |
| SOLAR-H            | 8 research institutes<br>from a total of 6<br>countries                                                                  | Development of novel routes<br>for hydrogen production from<br>water and solar energy<br>involving both artificial<br>photosynthesis and photo-<br>biological processes                                                               | Low<br>These technologies are still a very<br>long way from their possible<br>commercial use                                                                                                                    | ***<br>Technologie<br>s with the<br>potential to<br>produce<br>virtually<br>unlimited<br>renewable<br>hydrogen                        | ***<br>Technology<br>with the<br>potential to<br>entirely solve<br>the problem<br>of energy<br>security                                            | ***<br>Technolog<br>ies with<br>wide<br>potential<br>for<br>application<br>worldwide                                                                                                                                |
| TIME               | 7 partners from a<br>total of 6 countries.<br>Most partners are<br>research entities                                     | Development of novel<br>technologies for pre-treatment<br>and enzymatic hydrolysis<br>steps of ligno-cellulosic<br>biomass , which comprise up<br>to 50% of the present<br>production costs of bioethanol                             | Medium<br>The potential for commercialisation of<br>these technologies in general is high,<br>particularly in the long term.<br>However, it is not clear exactly what<br>the outcomes of this project were      | ***<br>Contributes<br>to the<br>development<br>of viable<br>routes to<br>low-carbon,<br>renewable<br>transport<br>fuels<br>production | ***<br>Contributes<br>to stimulate<br>sustainable<br>rural<br>development<br>and has<br>positive<br>impacts in<br>terms of<br>European<br>land use | ***<br>Contribute<br>s to<br>extending<br>EU<br>leadership<br>in biofuels<br>to<br>bioethanol<br>as well: it<br>also<br>improves<br>competitiv<br>eness of<br>fermentati<br>on and<br>biotechnol<br>ogy<br>industry |
| ZERO REGIO         | 16 partners, the<br>majority of which<br>from industry and<br>mostly from<br>Germany and Italy                           | The project consists in<br>constructing and testing<br>hydrogen infrastructure for<br>road vehicles in two European<br>regions. R&D essentially<br>focused on a ionic fluid<br>compressor and a high<br>pressure (1,000 bar) pipeline | High<br>The technologies developed in the<br>project particularly for hydrogen<br>compression / liquefaction and<br>transmission appear to offer a<br>breakthrough with high potential for<br>commercialisation | **<br>Although the<br>infrastructure<br>developed in<br>the project<br>uses<br>hydrogen<br>produced                                   | **<br>Although<br>hydrogen<br>from natural<br>gas only<br>improves<br>energy<br>security to a                                                      | **<br>Technolog<br>ies<br>developed<br>within the<br>project are<br>aimed at<br>improving                                                                                                                           |

|  | gas and as a<br>by-product of<br>industrial<br>processes, it<br>can also be<br>used in the<br>future for<br>renewable<br>bydrogen | extent, in the<br>future<br>hydrogen<br>could be<br>produced<br>from a wide<br>range of<br>feedstock | the<br>competitiv<br>eness of<br>the EU<br>hydrogen<br>industry |
|--|-----------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------|
|--|-----------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------|

# 1.6 Large-scale demonstration projects on sustainable mobility in Europe and worldwide

## **1.6.1** Overview of the considered projects

The selection process focused on the individualization of such projects developed a demonstration part, had a big public impact, contributed to make the transport more sustainable from different aspects, as specified in the definition. In this section most of the considered projects were carried out in Europe, with particular attention to the ones funded by the EC, but also some example regarding projects of other continents are considered to have a global view.

The projects were selected on the basis of the information available from internet, the Cordis Database and the EC brochures such as the "Projects Synopses: Sustainable Surface Transport Research Technological Development and Integration, 2002 - 2006", "Project Synopses: European Fuel Cell and Hydrogen Projects, 2002-2006". In addition, some projects information were collected by means of the filled in questionnaires.

Efforts were employed to find projects from the FP4 to the FP6, involving different kind of technologies and finally selecting only some of them and neglecting some others ones because of the time constrains. Making a choice, the selection of Asian, American, Oceania and African project focused mainly on hydrogen fleet demonstration projects, in order to carry out a comparison between a EC projects (Hyfleet: CUTE and HYCHAIN-MINITRAINS) with similar ones developed in other continents.

Among the received 11 questionnaires, two projects were picked out among them: Hyfleet:CUTE and CyberCars-2. Globally, from about European 250 projects database compiled during MOBIDAYS progressed, 29 were selected and included in the brochure, plus 2 are developed in the frame of national programmes. Among them, 23 are European, 9 from the other continents. Seven of those projects were presented during the conference, one of them was Japanese and one from U.S.A.

The selected project coordinators were then asked to provide more information about their projects by emails and some of them were contacted by phone.

Fairly problematic was the involvement of the speakers from the other continents. The available contacts on internet were poor and the email feedbacks were a few. For this reason, CIRPS contacted the embassy of different countries, trying to have a good balance among the continents. Actually, to contact the embassies was effective and they provided an important support to individualize, invite and involve the speakers from the other Continents.

The number of demonstration projects fostered in the world to solve the transport problems is huge and this report intends to propose and describe some example of them.

| Table 12 Project su | mmery demonstration | projects |
|---------------------|---------------------|----------|
|---------------------|---------------------|----------|

| Acronym | Full name | FP<br>(EC Framework<br>Programme) | Coordinator | Partners<br>(number of<br>partners) | Website | Budget (M€) |                    | Project<br>timing |
|---------|-----------|-----------------------------------|-------------|-------------------------------------|---------|-------------|--------------------|-------------------|
|         |           |                                   |             |                                     |         | Total       | EC<br>contribution |                   |

| FP4                                                                                                                                     |                                                                                                                 |                                 |                                                                                                                        |      |                                                                             |      |      |                             |
|-----------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|---------------------------------|------------------------------------------------------------------------------------------------------------------------|------|-----------------------------------------------------------------------------|------|------|-----------------------------|
| CITYBUS<br>DORDRECHT                                                                                                                    | Advanced hybrid midibus<br>fleet in the historic City<br>Centre of Dordrecht                                    | FP4                             | n.a                                                                                                                    | n.a  | n.a                                                                         | n.a  | n.a  | n.a                         |
| CONSTRUCTI<br>ON AND<br>DEMONSTRA<br>TION OF 10<br>LOW FLOOR<br>BUSES<br>EQUIPPED<br>WITH A NEW<br>ENERGY<br>SAVING<br>DRIVE<br>SYSTEM. | Construction and<br>demonstration of 10 low<br>floor buses equipped with a<br>new energy saving drive<br>system | FP4                             | Magnet Motor<br>GMBH- Weck<br>W.                                                                                       | n.a. | n.a.                                                                        | 2.9  | 1.2  | 01.09.1991-<br>31.12.1993   |
| JUPITER                                                                                                                                 | Joint Urban Project In<br>Transport Energy<br>Reduction                                                         | FP4<br>Energy<br>Programm<br>es | Merseyside<br>Passenger<br>Transport<br>Authority -<br>BLACKLEDGE<br>DAVID                                             | n.a. | n.a                                                                         | 0.02 | 0.1  | 19.07.1993-<br>01.31.1997   |
| MULI<br>BUSLORRY<br>WITH<br>MULTIPLE<br>USE GOODS<br>AND<br>PASSENGER<br>TRANSPORT                                                      | Muli buslorry with multiple<br>use goods and passenger<br>transport                                             | FP4-<br>NNE-<br>THERMIE<br>C    | BERLINER<br>VERKEHRSBE<br>TRIEBE<br>(BVG)-<br>SCHMIDT<br>HARTMUT                                                       | n.a. | n.a.                                                                        | 2.00 | 0.8  | 01.04.1996-<br>31.03.1999   |
| SAGITTAIRE                                                                                                                              |                                                                                                                 | FP4                             | CITY OF<br>LUXEMBOUR<br>G- Schiltz J.                                                                                  | n.a. | n.a.                                                                        | 4.9  | 1.5  | 01. 01.1997-<br>30. 04.2000 |
|                                                                                                                                         |                                                                                                                 |                                 | FP5                                                                                                                    |      |                                                                             |      |      |                             |
| CIVITAS-<br>TELLUS                                                                                                                      | Transport & Environment<br>aLLiance for Urban<br>Sustainability                                                 | FP5-<br>GROWTH                  | MUNICIPALIT<br>Y OF<br>ROTTERDAM-<br>Frank VAN<br>VLIET                                                                | 23   | http://www.civit<br>as-<br>initiative.org/pr<br>oject_sheet?la<br>n=en&id=7 | n.a. | n.a. | 01.02.2002-<br>31.01.2006   |
| CUTE                                                                                                                                    | Clean Urban Transport for<br>Europe                                                                             | FP5                             | Tasis Industrial<br>Applications<br>Ltd- Kostas<br>SEFERIS                                                             | 4    | www.fuel-cell-<br>bus-club.com                                              | 1.5  | 0.8  | 01.08.1997-<br>31.07.1999   |
| CYBERMOVE                                                                                                                               | Cybernetic transportation<br>systems for the cities of<br>tomorrow                                              | FP5-<br>EESD                    | Institut National<br>de Recherche<br>en<br>Informatique et<br>en<br>Automatique –<br>INRIA- Bernard<br>LARROUTUR<br>OU | 14   | www.cybermov<br>e.org                                                       | 3.8  | 1.9  | 01.12.2001-<br>30.11.2004   |
| CYBERCARS                                                                                                                               | CYBERnetic CARS for a<br>new transportation system<br>in the cities                                             | FP5 - IST                       | Institut national<br>de Recherche<br>en<br>Informatique et<br>en<br>Automatique -<br>INRIA - Michel<br>PARENT          | 14   | www.cybercars<br>.org                                                       | 5.0  | 2.5  | 01.08.2001-<br>31.07.2004   |
| ECTOS                                                                                                                                   | Ecological city transport system                                                                                | FP5-<br>EESD                    | ICELAND NEW<br>ENERGY LTD-<br>Jon Bjorn<br>SKULASON<br>(Mr.)                                                           | 11   | http://www.ecto<br>s.is                                                     | 6.9  | 2.9  | 01.03.2001-<br>01.03.2001   |
| FUEL CELL<br>BUS                                                                                                                        | Fuel cell bus project                                                                                           | FP5                             | Berliner<br>Senatsverwaltu                                                                                             | 8    |                                                                             | 5.2  | 1.8  | 01.03.2000-<br>29.02.2004   |

| PROJECT                |                                                                                                                                                   |                 | ng für<br>Wirtschaft und<br>Betriebe                                                                                      |    |                                                                             |      |       |                                       |
|------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|---------------------------------------------------------------------------------------------------------------------------|----|-----------------------------------------------------------------------------|------|-------|---------------------------------------|
|                        |                                                                                                                                                   |                 |                                                                                                                           |    |                                                                             |      |       |                                       |
|                        |                                                                                                                                                   |                 | FPO                                                                                                                       |    |                                                                             |      |       |                                       |
| ASK-IT                 | Ambient Intelligence<br>System of Agents for<br>Knowledge-based and<br>Integrated Services for<br>Mobility Impaired users                         | FP6-IST         | SIEMENS S.A.<br>Spain-<br>Mr Angel<br>Blanco                                                                              | 42 | http://www.ask-<br>it.org/                                                  | n.a. | n.a.  | Not<br>available                      |
| BEST                   | Bioethanol for Sustainable<br>Transport                                                                                                           | FP6             | City of<br>Stockholm,<br>Environment<br>and Health<br>Administration .<br>Gustaf Landahl                                  | 25 | http://www.best<br>-europe.org/                                             | n.a. | n.a.  |                                       |
| CIVITAS-<br>CARAVEL    | Travelling towards a new mobility                                                                                                                 | FP6-<br>SUSTDEV | Comune di<br>Genova - Vito<br>Maria Contursi                                                                              | 21 | http://www.civit<br>as-caravel.org                                          | 29,8 | 13,19 | n.a.                                  |
| CIVITAS-<br>MOBILIS    | Mobility Initiatives for Local<br>Sustainability - aims to<br>implement radical<br>strategies for clean urban<br>transport                        | FP6-<br>SUSTDEV | SYNDICAT<br>MIXTE DES<br>TRANSPORTS<br>EN COMMUN<br>DE<br>L'AGGLOMÉR<br>ATION<br>TOULOUSAIN<br>E - Alexandre<br>BLAQUIERE | 30 | http://www.civit<br>as-<br>initiative.org/pr<br>oject_sheet?la<br>n=en&id=2 | 17.4 | 9.3   | 01.02.2005-<br>01.02.2009             |
| CIVITAS-<br>SMILE      |                                                                                                                                                   | FP6-<br>SUSTDEV | City of Malmö -<br>Jesper König                                                                                           | 27 | http://www.civit<br>as-<br>initiative.org/pr<br>oject_sheet?la<br>n=en&id=1 | n.a. | n.a.  | n.a.                                  |
| CIVITAS-<br>SUCCESS    | Smaller Urban<br>Communities in Civitas for<br>Environmentally<br>Sustainable Solutions                                                           | FP6-<br>SUSTDEV | Communauté<br>d'Agglomératio<br>n<br>de La Rochelle<br>- Transport &<br>Mobility<br>Department-<br>Jean-Marie<br>Grellier | 13 | http://www.civit<br>as-<br>initiative.org/pr<br>oject_sheet?la<br>n=en&id=4 | 18.8 | 7.5   | February20<br>05-<br>February<br>2009 |
| CYBERCARS<br>2         | Close Communications for<br>Cooperation between<br>Cybercars                                                                                      | FP6-IST         | Institut National<br>de Recherche<br>en<br>Informatique et<br>en<br>Automatique –<br>INRIA-                               | 12 | http://www-<br>c.inria.fr/cyberc<br>ars2                                    | 4.0  | 2.1   | 01.01.2006-<br>31.12.2008             |
| HYCHAIN-<br>MINITRAINS | Deployment of innovative<br>low power fuel cell vehicle<br>fleets to initiate an early<br>market for hydrogen as an<br>alternative fuel in Europe | FP6-<br>SUSTDEV | air Liquide<br>S.a.                                                                                                       | 24 | www.hychain.o<br>rg                                                         | 37.6 | 17.0  | 15.01.2006-<br>14.01.2011             |
| HYFLEET:<br>CUTE       | Hydrogen for Clean Urban<br>Transport in Europe                                                                                                   | FP6-<br>SUSTDEV | DAIMLERCHR<br>YSLER AG-                                                                                                   | 31 | http://www.glob<br>al-hydrogen-<br>bus-<br>platform.com/                    | 43.0 | 19.0  | 10.01.2006-<br>09.09.2009             |
| QCITY                  | Quiet city                                                                                                                                        | FP6-<br>SUSTDEV | ACOUSTIC<br>CONTROL<br>ACL AB- Nils -<br>Ake NILSSON                                                                      | 27 | http://www.aco<br>ustic.se                                                  | 13.5 | 7.4   | 01.02.2005-<br>31.01.2009             |
| SILENCE                | Quieter Surface Transport<br>in Urban Areas                                                                                                       | FP6-<br>SUSTDEV | AVL LIST<br>GMBH- Josef<br>AFFENZELLE<br>R                                                                                | 43 | www.silence-<br>ip.org                                                      | 15.8 | 8.9   | 01.02.2005-<br>31.01.2008             |
| ZERO REGIO<br>GmbH     | Lombardia & Rhein-Main<br>towards Zero Emission:<br>Development &<br>Demonstration of<br>Infrastructure Systems for<br>Alternative Motor Fuels    | FP6-<br>SUSTDEV | Infraserv<br>GmbH & Co.<br>Höchst KG-<br>Heinrich<br>LIENKAMP                                                             | 16 | www.zeroregio.<br>com                                                       | 18.0 | 7.5   | 15.11.2004-<br>15.11.2009             |

| National European projects |                                                                                                      |                          |                                                        |                                                                                                    |                                                                                                      |                              |      |                                                                               |
|----------------------------|------------------------------------------------------------------------------------------------------|--------------------------|--------------------------------------------------------|----------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|------------------------------|------|-------------------------------------------------------------------------------|
| CEP                        | Clean Energy Partnership                                                                             | German<br>Governme<br>nt |                                                        | 12                                                                                                 | http://www.cep-<br>berlin.de                                                                         | n.a.                         | n.a. | November<br>2004-<br>December<br>2007                                         |
| SHHP                       | Scandinavian Hydrogen<br>Highway Partnership                                                         |                          | HyNor<br>Hydrogen<br>Sweden<br>Hydrogen Link           | 5                                                                                                  | http://www.sca<br>ndinavianhydro<br>gen.org                                                          | n.a.                         | n.a. | n.a.                                                                          |
| NON-EU projects            |                                                                                                      |                          |                                                        |                                                                                                    |                                                                                                      |                              |      |                                                                               |
|                            | Hydrogen Highway                                                                                     | Canada                   |                                                        |                                                                                                    | www.hydrogen<br>highway.ca                                                                           |                              |      |                                                                               |
|                            | UNDP-GEF-China fuel cell<br>bus project                                                              | China                    |                                                        |                                                                                                    | <u> </u>                                                                                             |                              |      |                                                                               |
|                            | Domestic FCV<br>development projects                                                                 | China                    |                                                        |                                                                                                    |                                                                                                      |                              |      |                                                                               |
| JHFC                       | Hydrogen & Fuel Cell<br>Demonstration Project                                                        | Japan                    | Japan Ministry<br>of Economy,<br>Trade and<br>Industry | Universities<br>and research<br>centres : n.a;<br>automotive: 8;<br>infrastructures<br>builder: 16 | http://www.jhfc.<br>jp                                                                               |                              |      | JHFC1:<br>2002 – 2005<br>JHFC2:<br>2005 – 2010                                |
| CaFCP                      | California Fuel Cell<br>Partnership                                                                  | USA                      |                                                        | 21 full<br>members<br>13<br>associate<br>members                                                   | http://www.fuel<br>cellpartnership.<br>org/                                                          | 2,000,000<br>\$ each<br>year |      | Start: 1999<br>1st phase:<br>2003<br>2nd phase:<br>2007<br>3rd phase:<br>2012 |
| DOE<br>Hydrogen<br>Program | U.S. DOE's Technology<br>Validation Program for<br>Hydrogen Infrastructure<br>and Fuel Cell Vehicles | USA                      |                                                        |                                                                                                    | http://www1.eer<br>e.energy.gov/h<br>ydrogenandfuel<br>cells/pdfs/doe_<br>h2_tech_valida<br>tion.pdf |                              |      |                                                                               |

## 1.6.2 Conference objectives and outputs

The third and final Mobidays conference took place in Rome on 7 November, 2007. It dealt with large-scale demonstration projects on sustainable mobility in Europe and worldwide.

The conference aimed to provide the opportunity to disseminate and discuss the results achieved, the main goals reached and the problems still to be solved in large-scale European and non-European demonstration projects. It was also an opportunity to compare Europe with USA and Japan.



Playing the role of global project overview and therefore media wise more appealing, all the conferences –particularly on the final conference - engaged a significant media interest.

The conference started with a presentation of the European Investment Bank dealing with the Urban transport projects and the new financing instruments. Then, the conference was dedicated to European projects from the  $4^{th}$  to  $6^{th}$  Framework Programmes and gave some space to the industry. To compare the European experience with the Asian and the American one, a specific topic had been selected: the hydrogen fleets have been realizing in the world. Finally, the final reports from the previous conferences about 1) sustainable vehicles, 2) socio-economic barriers and 3) infrastructure have been presented.

In addition, during the conference four interviews to the speakers and other three ones to the MOBIDAYS partners were carried out in the press room and they were published on the H2roma website.

## Speaker selection process

From about 30 among project coordinators, researchers, institution and industry represents, 10 were the selected speakers, from 7 countries and three continents, as reported in Table 13 (not considering the MOBIDAYS partners).

| Name                 | Institution                    | Institution<br>quarters | Projects presented                                                                                                                                                                                                                                                                                                                                                                                                    | Title of<br>presentation                                                                                                             |
|----------------------|--------------------------------|-------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|
| Mario Aymerich       | European Investment Bank       | Belgium                 | NICHES                                                                                                                                                                                                                                                                                                                                                                                                                | EIB urban transport<br>projects                                                                                                      |
| Adriano Alessandrini | Sapienza-University of<br>Rome | Italy                   | CITYMOBIL                                                                                                                                                                                                                                                                                                                                                                                                             | CITYMOBIL project                                                                                                                    |
| Michel Parent        | INRIA                          | France                  | CYBER CARS 2                                                                                                                                                                                                                                                                                                                                                                                                          | CYBER CARS 2<br>project                                                                                                              |
| Giancarlo Crepaldi   | Trentino Trasporti             | Italy                   | Demonstration project for<br>integrated energy saving urban<br>transportation systems<br>incorporating hybrid bus fleets                                                                                                                                                                                                                                                                                              | Demonstration<br>project for<br>integrated energy<br>saving urban<br>transportation<br>systems<br>incorporating<br>hybrid bus fleets |
| Dr. Anton Reisinger  | BMW AG                         | Germany                 | -H2Win (USA)<br>-FreedomCAR/FreedomFUEL (USA)<br>-Californian Fuel Cell Partnership(USA)<br>-Californian Hyway (USA)<br>-CEP-Clean Energy Partnership<br>(Germany)<br>-TES-Transport Energy Strategy<br>(Germany)<br>-HyWays (France)<br>-JHFC Japan Hydrogen and Fuel Cell<br>Demonstration Project (Japan)<br>-Sinergy EDB Project (Singapore)<br>-ECTOS-CUTE-STEP (Europe-China-<br>Australia)<br>-DoE Program USA | The BMW<br>CleanEnergy<br>programme                                                                                                  |
| Dr. Udo Hartmann     | Daimler AG                     | Germany                 | ECTOS-CUTE-STEP (Europe-China-<br>Australia)<br>CEP-Clean Energy Partnership<br>(Germany)<br>Bus Project Beijing China<br>Californian Fuel Cell Partnership(USA)<br>DoE Program USA<br>JHFC Japan Hydrogen and Fuel Cell<br>Demonstration Project (Japan)                                                                                                                                                             | The Road to the<br>Future: The<br>Daimler<br>perspective on<br>sustainable mobility                                                  |

#### **Table 13 Rome presentations**

|                          |                                                                                                                                                                          |          | Sinergy EDB Project (Singapore)<br>Zero Regio (Italy, Germany) |                                                                |
|--------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|----------------------------------------------------------------|----------------------------------------------------------------|
| Tiago Farias             | DTEA - Investigação em<br>Transportes, Energia e<br>Ambiente, Instituto Superior<br>Técnico                                                                              | Portugal | Hyfleet: CUTE project                                          | Hyfleet: CUTE<br>project                                       |
| AmbrogioTagliabue        | Air Liquide                                                                                                                                                              | Italy    | HYCHAIN-MINITRAINS                                             | HYCHAIN-<br>MINITRAINS                                         |
| Dr. Hiroschi<br>Hasegawa | Polymer Electrolyte Fuel<br>Cell Cutting-Edge<br>Research Center (FC-<br>Cubic), National Institute of<br>Advanced Industrial<br>Science and Technology<br>(AIST), Japan | Japan    | ASIA: JHFC - Japan Hydrogen<br>& Fuel Cell Demonstration       | ASIA: JHFC -<br>Japan Hydrogen &<br>Fuel Cell<br>Demonstration |
| Ned T. Stetson           | Office of Hydrogen, Fuel<br>Cells and Infrastructure<br>Technologies, U.S.<br>Department of Energy                                                                       | U.S.A.   |                                                                | U.S. Large Scale<br>Demonstration<br>Projects                  |

## Conference outcomes

In general, the demonstration projects evidenced:

- To have a significant role in communication. They constitutes a high impact interface between technicians and final users of the innovative products to enhance the general awareness on them. For example, considering the presentation of Mr. Crepaldi, he told the attendees that after the EC project, the technology of hybrid traction has been adopted by many private cars and a lot of taxis. During the past year, important winter resorts such as Moena, Cavalese, Predazzo and Pozza di Fassa tested hybrid buses for school transport and door-to-door freight. The heavy traffic in these resorts during winter months and the consequent emission concentration aroused the Authorities'interest in hybrid traction.
- To be fundamental in validating the real world performance of the technologies developed in the labs, in verification of the reliability in real life conditions, the robustness of the product in the hands of the users, the durability.
- To improve the expertise not only in technological and economical point of view, but also in social aspects, which is not negligible aspect. In fact, the products are chosen not only for performances, but also on the basis of costumer ecological sensitiveness, the safety perception, the costs and the everyday life habits modifications. In some cases the safety perception and responsibility issues are crucial aspects (e.g. driverless vehicles).
- For the innovative products application in transport sector, one of the barriers which affects all the projects is the lack of standardization, codes, regulation. Those obstacles often require long time and many human recourses to be overcome. For this reason, nobody wants to be the first to implement a new system.
- The Political support is important in such projects on the one hand to push (unpopular) accompanying measures and on the other hand to facilitate the long authorization procedure. About this aspect, it is worth to highlight that for example in Japan the Ministry of Economy, Trade and Industry directly coordinated the JHFC Japan Hydrogen & Fuel Cell Demonstration Project.
- A preliminary study to select the site suitable for the specific application have to be carried out. It is very important in this kind of projects.
- Media coverage has to be ensured.

Two of the most representative vehicle manufacturers confirmed their interest in Hydrogen technology, one on ICE technology (BMW Group), and the other one more focused on FC propulsion system. Both of them are involved in a number of Hydrogen demonstration projects around the world and they showed their vision and the relative roadmaps to reach the objective of producing a large number of hydrogen powered vehicles and penetrate the market. They proved to believe in hydrogen as a promising substitute of the nowadays conventional fuels although they adopted different strategies to achieve the aim. In fact, while BMW chose liquid stored hydrogen and bivalent internal combustion engine (hydrogen/gasoline), at least in the bridging period, Daimler is focusing on compressed stored hydrogen and FC propulsion system.

In technology point of view, the crucial aspects and the individualised barriers are:

- The range has to be increased for the acceptance of the technology.
- Considering the hydrogen quality and purification: to develop cost-effective hydrogen purification technology and quality measuring devices; to increase understanding of the effect of impurities on fuel cell stack behavior.

Concerning the commercialization, it is necessary:

- Deploying a significant volume of vehicles based on similar technology platform to provide the conditions for a pre-industrial approach
- Lighthouse Regions as the next step to apply the hydrogen technologies.

The selected messages from the conference which are specific to the theme of standardization/code for the hydrogen fleets introduction are:

- Strong political commitment needed
- It is essential to synchronize the fleet operation of the Fuel Cell vehicles with corresponding hydrogen networks
- It is necessary to build-up customized networks of H<sub>2</sub> fuelling stations (publicly accessible, fast and complete refill, easy handling, ...)
- It is required to determine methodology to reduce station access concerns and accelerate agreements
- Promotion of interim standards development and identification of Codes & Standards gaps related to storage and infrastructure have to be pursued
- Development of standards to ensure that fuel cell vehicles can be parked in public/home garages and service facilities nationwide
- About the vehicle use (US Specific), find methods to ensure that fuel cell vehicles can travel on bridges, tunnels and highways nationwide

With respect to the different approaches adopted by the different countries in the world to implement innovative solutions and realize demonstration projects, it is worth to highlight that in Japan the Ministry of Economy, Trade and Industry directly promoted and supported the project JHFC involving and coordinating the partnership which is comprised of research centers and companies (vehicles and infrastructures). In USA, the DoE establishes the objectives and the roadmap for innovative technology applications together with the industries, which are involved in the decision making processes by means of continuously organized meeting. In particular, to facilitate wide exploitation and dissemination of the research results, the NREL-National Renewable Energy Laboratory provides the direct access to all composite data products concerning the hydrogen and FC research on the web (http://www.nrel.gov/hydrogen/cdp\_topic.html).

In technological perspective, Hyfleet Cute project raised a gap between the current and the next generation hydrogen buses, while Stetson of DoE told during his presentation that in USA the Roll-out of  $2^{nd}$  generation vehicles is beginning now.

Before analyzing some of the projects funded by the EC, the crucial role that the European Investment Bank (EIB) can play in the Urban Transport Projects realization will be briefly described. It is not part of the project analysis, but the presentation has been considered important for knowing the several instruments to undertake the demonstration projects in transport sector. In fact, the EIB is enabling new instruments to support the Urban transport projects fall within main priorities of the Bank, which are:

- Environment
- Regional development and possibly:
- Innovation
- Social cohesion

Being a bank, the projects to be supported by the EIB should have high technical quality and economic soundness, financial viability and adequate security, but in addition they should be consistent with EU priorities.

The dialog between the EIB and the EC gave the opportunity to agree some joint initiatives among which the most important are:

– JASPERS (Joint Assistance to Support Projects in European RegionS) is a major joint policy initiative of the EIB, the European Commission and EBRD to assist beneficiary countries (principally the new Member States and acceding countries of the EU) to absorb EU Structural and Cohesion Funds over the next budgetary planning period 2007-2013.

– JESSICA (Joint European Support for Sustainable Investment in City Areas) is a joint initiative of the Commission, the EIB and the Council of Europe Development Bank. The aim is to use Structural Funds to finance Urban Development Funds (UDFs) using revolving financial mechanisms to support revenue-generating projects within integrated urban plans supporting the sustainable development of urban areas. The EIB may act as holding fund of UDFs and is contributing to the initiative with its expertise and complementary financing of projects through loans.

Furthermore, the bank is currently preparing a new loan facility (namely using leasing financial principles) oriented to provide advantageous long-term financing to urban transport operators replacing or expanding their bus fleets with new vehicles outperforming existing environmental regulations.

New financial instruments, including higher assumption of risks (both during construction and operation), are being developed in order to support the realization of new projects in the urban area.

During the experience raised during the realization of the such projects, the most important lesson learnt is "The tariff adaption to actual demand needs and quality of service are the only ways for effectively attracting users" and this has to be absolutely taken into account to make a project economically and financially effective.

## 1.7 Projects analysis

An analytical description of the projects considered is proposed. Of the 31 EC projects, the 7 projects presented at the conference will be analyzed in depth, considering the research contents,

the consortium composition, the results and some comments about the possible exploitation and the market readiness has been proposed. Whist 21 European projects will be shortly reported.

All the considered projects include a demonstration application. Some are focusing mainly on one of the aspects of sustainable mobility, as defined in MOBIDAYS, but being the intents of this section to focus on large scale-demonstration project, most of them are developing the integration of several solutions. For this reason we could not propose a strict classification of them, but we are presenting an overview of them considering the Framework Programme they were funded from. The selection includes projects which worked on alternative fuels, as biofuel and hydrogen, hybrid vehicles, traffic management, safety, noise control, accessibility. Among those projects, both technological and socio-economic solutions have been developed.

Finally, an overview on projects carried out in other continents has been included, with particular attention to the ones were presented during the conference.

## FP4

**CITYBUS DORDRECHT** was a demonstration project on an advanced hybrid minibus fleet in the historic city centre of Dordrecht, in Netherlands. It envisaged to use an advanced design fulllength low floor midibuses in the city-centre, in association with integrated traffic management measures to improve the overall efficiency and appealing of public transport. This demonstration project in Dordrecht covered two routes which are sufficiently significant for the evaluation of the impact of this system.

During the commissioning phase the number of passengers increased from approximately 300 per weekday to approximately 1500 per weekday, but some the technical faults occurred regularly and they could not be resolved by the technical department of Stadsvervoer Dordrecht.

Based on technological and financial preconditions and preconditions concerning transport, Stadsvervoer proposes to decide against using hybrid or electric buses in a definitive plan of operation. As a next best alternative in terms of environmental aspects, it therefore proposes to include an LPG engine as a requirement in the public tender for the purchase of new buses.

**CONSTRUCTION AND DEMONSTRATION OF 10 LOW FLOOR BUSES EQUIPPED WITH A NEW ENERGY SAVING DRIVE SYSTEM.** Demonstration of a public transportation system of the future : low floor bus with a completely level floor and electric wheel motors. The project intended to realize an electric transmission which was completely new type at the moment of the project realization. Mechanical parts and functions (such as transmission, drive shaft, clutch, retarder) were replaced with electric components and electronic control elements. A generator was flanged directly to the internal combustion engine.

At the end of the project three buses have been in regular line operation for about 11 months. Final results concerning energy savings are not available.

**JUPITER** project had the objective to implement large scale projects in six European cities. They have implemented a variety of improvements to their public transport systems in combination with traffic restriction measures. The projects demonstrate combinations of measures designed encourage the use of public transport and discourage the use of private cars, thereby reducing energy consumption and emissions. The main measures implemented are :

(i) The introduction of new public transport vehicles providing a more user-friendly passenger environment (involving, in most cases, low-floor buses).

(ii) The introduction of state-of-the art passenger information systems.

(iii) The development of new or improved transport interchanges.

(iv) The introduction of bus priority measures combined with restrictions on private car traffic.

(v) The integration of urban traffic management control systems.

**JUPITER 2.**To improve energy efficiency, in both demand and supply sectors; to promote a wider utilization of renewable energy sources; to encourage a cleaner use of coal and other solid fuels; and to optimize the exploitation of the EU's oil and gas resources.

## MULI BUSLORRY WITH MULTIPLE USE GOODS AND PASSENGER TRANSPORT is

a demonstration project which was carried out by transport operators of Berlin and Trollhättan resp. Alvsborg region. The MULI buslorry is a medium sized vehicle for multiple use powered by natural gas - CNG. It can be used for passenger transport, for goods transport and for both passenger and goods transport at the same time. In urban areas the MULI buslorry can be used for passenger transport in the public transport system during periods of light traffic, when there is a need for smaller vehicles, or as an extra bus during rush hours. During the operation experience the following outputs raised:

- Several technical problems occurred with the gas driven MULI-Buslorry in Berlin. The vehicles unsatisfying availability created problems especially for the goods transport operator. This showed that a substitute vehicle is necessary and should provided in similar demonstrations.

- The vehicles is well accepted by the drivers of goods and passenger transport.

- The new public transport services provided by the MULI-Buslorries in Älvsborg line bus appreciate the vehicle comfort.

- Considerable difficulties were faced with the licensing of the vehicles in Sweden. Despite the MULI-Buslorries run by gas meet the common European safety standards the Swedish authorities denied the approval of the gas driven engine of the MULI-Buslorry. An exemption from the Swedish National Road Administration was applied for in March. The exemption decision was delayed until September 1998 and then denied. This shows that the technical requirements for gas vehicles in Europe should be harmonized.

**SAGITTAIRE** was a demonstration project using advanced hybrid-electric buses fitted with innovative batteries. It intended to improve the overall efficiency and attractiveness of public transport which demonstrated electric-hybrid bus in Luxembourg, Besançon, Alicante, Sintra, Stavanger, Savona, Trento, Athens and Brugge.

The main objectives may be summarized as follows:

- to demonstrate, on a sufficiently large scale and over a sufficiently long period, the viability of the hybrid electric bus technology in ordinary operating conditions and its positive effects on urban public transport in technical, economic, social, energy and environmental terms.

- to encourage the modal transfer away from private motorised traffic and towards public transport by installing an attractive service so as to overcome the problems caused by private motorised traffic in town centres (congestion of roadway system, energy consumption, polluting emissions, noise, etc.)

- to provide this service by means of hybrid electric buses combining energy efficiency and low zero emissions.

- to propose a high quality service so as to make urban public transport more efficient and more attractive (schedule, speed, frequentation, waiting times, security, timetables, intermodality, etc)

- to carry out a common procurement for purchase of the technology.

to demonstrate user acceptance of the hybrid-electric bus technology.

- to establish guidelines and formulate recommendations for a wide-scale penetration of the hybrid electric bus penetration.

## FP5

**CYBERCARS**. It proposed a new approach in urban transportation. It developed prototype vehicles capable of moving autonomously without a driver, using an array of sensors, image

processing software and other communication technology. The prosecution of this project was CyberCars 2, but also other projects as Citymobil, MobiVIP (2004), CyberC3 (2005)

**CYBERMOVE.** The goals are to improve the attractiveness and quality of life in Anyville by reducing the use and the parking needs of traditional cars. This will be achieved by new transportation systems based on cybercars as a complement to public mass transportation. Cybercars offer a cleaner and safer transportation mode available to everyone including people who cannot (or should not) drive for a level of service better than with private cars (door to door, individual, on-demand transportation).

CyberMove's aim is to create a new transportation option for city authorities to move towards sustainability and increase the attractiveness of city centres.

It starts with an analysis of user needs, a definition of operating scenarios and a pre-design phase. The first planned milestone is the selection of sites in the 12 cities which have officially expressed their interests. The second milestone consists of guidelines for safety design in those selected cities. A design review is the last milestone before the Mid Term Assessment of the project, which will clarify demonstration plan and budget. Demonstrations are expected during the project in at least 3 European sites.

**CUTE.** It was a European Union project initiative to test three Citaro fuel cell buses each in nine cities in Europe. Therefore regional appropriate hydrogen (H2) production and refueling infrastructures were established. The outcome of the project was an improved public acceptance of the H2 fuel cell transport system, a more secure energy supply for the EU and the realistic application of renewable energy sources. It enhanced the competitiveness of EU industry. Its prosecution was HyFLEET:CUTE

**ECTOS**. A consortium of leading European corporations within the area of hydrogen production and fuel distribution, vehicle manufacturing join forces in Reykjavik, Iceland to perform a real scale comparative assessment of the effect of changing the transport energy base from fossil fuel to regenerative produced hydrogen. The ECTOS-project involves research, demonstration and evaluation of hydrogen infrastructure and fuel cell buses. The outputs of the project were exploited for the subsequent CUTE and Hyfleet:CUTE.

**FUEL CELL BUS PROJEC.** The project is aimed at completing the demonstration approach of the first European fuel cell bus using liquefied hydrogen in an inner city application. This project has been already evaluated in a former THERMIE evaluation as, excellent. Due to a lack of funding means the Commission was only in a position to finance the first phase of the project. This fuel cell bus project is aimed at demonstrating the innovative fuel cell propulsion system, different energy storage systems and a stationary hydrogen refilling infrastructure, clearly outlining not only the benefits to be obtained from a zero emission fuel, but also the advantages of this low bus design. Fuel cells are at the cutting edge of vehicle design and the project will show how its wider market introduction could have major environmental benefits. Fuel cell technology will show how European dependency on foreign energy sources.

## FP6

**ASK-IT** deals with to make the means of transport, in particular the public service, accessible to everybody. The project develops ambient Intelligence System of Agents for Knowledge-based and Integrated Services for Mobility Impaired users. In Ask-it some demonstration projects are included as the **West-Brabant Initiative** and **The new London Taxi**, in which the designer adapted the classical London taxi so that it could be used by wheelchair users. The **West-Brabant Initiative** is a project implemented in Netherlands to improve the accessibility of public transport

to elderly and mobility impaired, for example by means of an on-demand service and bus equipped with automatic boards.

**BEST**-Bioethanol for Sustainable Transport is one of the biggest demonstration projects on biofuel. It has been demonstrated an extensive substitution of petrol and diesel to bioethanol. Furthermore, the project is initiating a lasting and accelerating development of bioethanol-fuel all over Europe through efficient ways of marketing and training and pave the way for a market breakthrough for ethanol- fuelled vehicles. The objective is to reduce dependency on oil and greenhouse gas emissions through a fine-tuned method of market introduction.

This has been done through a massive, but very strategic introduction of vehicles and distributionlines at 10 strategically chosen sites in a maximum integrated public-private partnership of cities/regions, car manufacturers, fuel producers, fuelling stations and fleet owners combined with exactly targeted marketing campaigns. Almost 9.000 vehicles and more than 150 fuelling stations are expected as a result of the project making this the largest demonstration of alternative fuelled vehicles yet supported by the Commission

**Qcity-Quite city** incorporates issues such as traffic control, town planning, architectural features, noise perception issues, intermodal transport, change between transport modes, traffic restrictions, enforcement measures, economic incentive measures, introduction of hybrid vehicles and of new guided public transport vehicles. The solutions will be implemented in situ and validated.

**SILENCE** focuses more on noise pollution. It is developing a car with acoustic trim for demonstration purposes, is realizing and testing a prototype of a heavy duty vehicle powertrain, it is developing prototypes of improved power packs and optimized wheels and it is developing and testing novel road surfaces.

**ZERO REGIO** is aiming at developing low-emission transport systems, infrastructure systems for supplying fuel cell passenger cars, and automobile-fleet field tests in two regions in Italy and Germany. The aim is to test them in normal daily life use. The project is coordinated by Infraserv GmbH & Co Hochst KG and involves 16 partners from 4 European member states. In technological point of view, the realized fuel stations will supply liquid hydrogen at -253°C as well as compressed hydrogen at both 350 and 700 bar. After the construction of hydrogen infrastructure, FC vehicles (F-Cell, class-A from Daimler – Chrysler in Rhein-Main) will be driven in normal daily use in different applications. The demonstration phase of the project will be accompanied by an evaluation of the data acquired during the fleet tests with respect to energy efficiency, environmental impact and socio-economic aspects.

Among the sustainable mobility project, the **CIVITAS initiative** has an important role. It brings together cities from different countries to work jointly to improve the transportation in a sustainable way. CIVITAS I started in early 2002 (within the 5th Framework Research Programme); CIVITAS II started in early 2005 (within the 6th Framework Research Programme). Within CIVITAS I (2002-2006) there are 19 cities clustered in 4 demonstration projects, whilst within CIVITAS II (2005-2009) 17 cities in 4 demonstration projects are taking part. These 36 cities all over Europe will be funded by the EU with 100 M  $\in$  and the overall budget of the Initiative will be more than 300 M  $\in$ .

**CIVITAS CARAVEL:** road and parking pricing, extension of access-restricted zones coupled with enforcement; High Clean Mobility Corridors; freight distribution schemes (use of alternative fuels and clean vehicles for public transport such as CNG and bio fuels), development of publicity and awareness raising schemes

**CIVITAS MOBILIS.** It aimed to the application of alternative fuels, implementation of ITS applications for improving traffic conditions and public transport services, management of the accessibility of sensitive areas through innovative zoning approaches, to clean urban logistics and implementing one new freight distribution centre operating with clean vehicles, to ensure social inclusion by enhancing the accessibility (physical, psychological, economic, informational) of mobility services, to enhancing public transport quality and integration with other transport modes substantially (private car, bicycle) through innovative planning and service development, to provide new targeted mobility services changing dominant concepts of vehicle ownership and use (car-pooling and car-sharing, mobility card schemes), to promote sustainable mobility, modal shift (walking, cycling, public transport) and behavioral change through targeted and personal marketing, service development, information dissemination, education and training; and finally Contributing to Europe-wide evaluation and dissemination of the results to be put forward through the CIVITAS initiative.

**CIVITAS SMILE** intends to cut the current trend of increased use and ownership of cars, promote sustainable alternatives and stimulate efficient and clean city distribution of goods. The project addresses these issues through promotion of bio fuels, clean vehicles and intelligent travels from door to door in order to provide better urban air quality, increased quality of life and better health, safety and security to all of city's inhabitants irrespective of social status, gender and other issues.

## **CIVITAS-SUCCESS** will demonstrate:

- vehicles using clean and alternative fuels can be an efficient choice for urban transport: 12 hybrid buses, using biofuel and electricity will be implemented in the 3 cities; a process for recycling cooking oils for fuelling vehicles will be trialled in La Rochelle in cooperation with Ploiesti's university;

- an ambitious package of mobility and traffic management measures. Significant results can be seen regarding sustainable transport and energy policy: around 20 km<sup>2</sup> of car-free and pedestrian zones will be realised in the city centres; new concepts and policies for the local distribution of goods will be tested, involving new urban logistics organisation and management; telematics systems will be implemented to provide real time information for travellers (using advanced integrated databases or via GPS system) and allowing integrated pricing strategies for the local ticketing systems.

The accession countries, soon to be new member states, can learn from our previous mistakes and contribute to urban collective transport issues, while implementing at the same time actions promoting alternative transport modes: park-and-ride, dedicated bus lanes, accessibility improvements at interchanges, higher bus frequencies, improved infrastructures, cycling routes or walking streets; with all actions integrated within frameworks such as car or bike sharing plans, school or business travel plans.

Contribute deeply to many different related research and assessment activities such as new, allinclusive training and communication initiatives supporting the project objectives.

**CIVITAS TELLUS** will focus on increasing the modal share in favour of public transport, increasing the use of bicycles, lowering congestion, reducing traffic related air and noise pollution below national and EC standards, decreasing inner city car usage, improving intra-organisational co-operation at city levels, increasing political and public awareness, reducing road casualties, improving public private co-operation.

## In the following section, the projects presented at the Rome conference will be described and analyzed.

The projects analyzed below are reported in the order of the Rome conference programme. The summery tables will follow the projects description.

**DEMONSTRATION PROJECT FOR INTEGRATED ENERGY SAVING URBAN TRANSPORTATION SYSTEMS INCORPORATING HYBRID BUS FLEETS,** had the objectives to reduce the consumption of fossil fuels deriving from the new technologies (advanced hybrid and electric buses and innovative batteries), to compare the new technologies and to setting out of future policies, to improve the urban traffic and routes rationalisation, to increase the use of public transport in comparison with private one, to rationalise the costs of public transport system. The chosen demonstration cities were Trento and Oxford.

The consortium included five private companies, two of which were transport companies, one had wide experience in alternative drive engineering and particularly in hybrid and electric vehicles, one was a Battery manufacturer and one was specialized in engineering test and judgement.

During the project, hybrid-series driven minibus equipped with sodium- nickel chloride type batteries was designed, built and tested in real life conditions.

From the technical point of view, the verified vehicles, excepts for problems caused by their 'youth', did not evidence particular problems with reference to their performances and reliability; since the thermal engine works at constant speed, the polluting emissions (including noise) were reduced in comparison with the traditional technology, without affecting the driving comfort. The bus was designed in order to travel "all electric" up to 15-20 km, which resulted more than enough to cross the historical centre.

Although sufficiently reliable for real life application, this technology is characterized by too high investments and maintenance costs to make this technology ready for the market.

The experience permitted also to field-test "Zebra" batteries equipped with sodium-nickel-chloride electrochemical system, thus highlighting further positive qualities of the accumulator, electric capacity, specific capacity for weight unit, absence of "memory" phenomena and constant power supply also at the final phase of exhaust (hysteresis). This type battery usage was experimental at the time and their tests enhanced the knowledge on real working conditions. They allowed further applications in a number of industrial technologies. The results were exploited to introduce second generation hybrid buses. The new vehicles, which were equipped with a direct injection diesel engine EURO 3, were introduced in 2001 and 2002.

In addition, the application of hybrid buses as public transport contributed to increase a relevant ecological culture side by side its technical evolution. If we only consider Trento, the technology of hybrid traction has been adopted by many private cars and a lot of taxis.

During the past winter season, important winter resorts such as Moena, Cavalese, Predazzo and Pozza di Fassa tested hybrid buses for school transport and door-to-door freight.

**CITYMOBIL** project has realized innovative automated transport systems. It aims to investigate the applicability of innovative systems such as Advanced City Cars, Personal Rapid Transit (PRT) and Cybercars in the real life considering not only the technological challenges, but also the human factor issue (e.g. the safety perception) and the regulation lakes about the certifications and homologation of those innovative means of transport, which is a key aspect to be solved. The overall work will bring through the realization of three large-scale demonstrators in three cities: Heathrow, Rome, Castellón. In addition, a Cybercars showcase was realized in Daventry where 3 permanent vehicles (plus 2 other vehicles) are already available for the project conference attendees, press, televisions, schools and other individual visitors. Another one will take place in Hyvinkää, while advanced city cars will be showed in Genova and La Rochelle. They will enhance general awareness about the characteristics, benefits and costs of such systems.

The first vehicle of the demonstration project in Castellon has been already available in March 2007 and after that, the tests phase started.

This huge project is organized in 5 horizontal sub-projects which involve 28 partners, compromising of city- and regional public authorities, manufacturers and suppliers of advanced

transport systems, universities, research institutes and public transport organizations from 10 European countries.

The project will contribute to promote innovation, to facilitate accessibility and co-modality, ensuring high level of safety.

Some of the prototypes and of the infrastructures are already realized and displayed as showcase during events for both technical and not technical persons: three electric vehicles (two Fiat Panda and one new Fiat "Cinquencento", (500) with advanced driving assistance, platooning and automated parking capabilities), one CyCab cybercar from INRIA equipped with an obstacle detection system based on a laser scanner.

With regard to the Personal Rapid Transit pilot scheme for Heathrow's new Terminal 5, the project has been confirmed and construction began in earnest in November last year. Most of the elevated guideways have now been built, and the network infrastructure are completed, two preproduction vehicles are being trialed very satisfactorily at ATS's Cardiff Test Track, and the sixteen vehicles which will operate on the network will be delivered throughout the rest of the year. Control equipment and the Control Centre are installed and the system will be tested exhaustively throughout the autumn and winter to ensure it is absolutely reliable. It will begin public operation, replacing the current shuttle bus service, in spring 2009.

Some possible applications of the technologies developed during the projects have already evaluated and proposed, for example the Advanced City Car technologies would help in the expansion of the car-sharing service in La Rochelle.

## CYBER CARS 2 project - Close Communications for Cooperation between Cybercars.

The aim is to improve the management as well as the security by vehicle-vehicle and vehicleinfrastructure communications and vehicles coordination in order to avoid obstacles, to improve the interaction between two vehicles running at close range (platooning) and during the phases of merging and crossing. In addition it will support the management of dual-mode vehicles, which are vehicles can be used in two ways, of car-sharing, of various operation modes (including full automation) and of the goods transport (with a variant). In other words, it will upgrade the socalled Cybernetic Transport System concept in order to apply those new communication technologies and new control algorithms to eight cybercars in order to finally realise three demonstrations in Heathrow, Rome, Valencia.

As CyberCars 2 as Citymobil have a common history which started in 1990's with the first concepts in (Serpentine, RUF, Dedale,...) and went on with the following steps:

- First prototypes mid 1990's
- First operational system 1997
- CyberCars projet in 2001
- Floriades demo in 2002
- Antibes demonstrations in 2004
- MobiVIP (2004)
- CyberC3 (2005)

The acquired experience allowed to understand the importance of choosing a good site, of focusing on a real service, of facing safety and responsibilities issues, of carrying a follow-up. In addition, the dissemination activities during the conference and press meetings had great impact and allowed to enhance the general awareness about those innovative technologies.

The involved partners are 12 including research institutes, industries, universities.

The transition between cybercars and Advanced Driver Assistance Systems ADAS vehicles will be made easier with the forecasted arrival of "dual-mode" vehicles which will offer an automatic mode in specific situations such as platooning and in specific locations such as automated parking lots and manual-assisted mode in regular situations. **Hyfleet Cute** involves a quite big and international partnership ensuring wide cooperation among transport companies, infrastructure companies, vehicle manufacturer and scientific organizations. In fact the partnership consists of: two governmental partners, three automotive partners, seven transport partners, nine energy companies and eight academic and consulting partners. It has proceeded from the Cute project which run from 2002 to 2006 and successfully demonstrated the viability of hydrogen powered fuel cell buses in public transport in 9 European Cities. 27. Furthermore, in the framework of the project decentralized hydrogen production in 7 European cities, centralized produced hydrogen for 2 European Cities and 9 new innovative high pressure hydrogen refueling stations were demonstrated.

Hyfleet Cute reached more international dimension than the CUTE one including also other continents: China and Australia. The fleet is composed by 47 hydrogen powered buses in regular public transport service in 10 cities on three continents.

The total driven mileage reached equal 2.036.668 km and the FC achieved 5000 working hours. The research implemented during the project should carry through the design and development of a new FC hybrid pre-prototype.

There are some aspects which have to be further developed to make the technologies ready for the market. In fact, there are still some problems to be solved. Some ones are connected to the vehicle technology in relation to the gap between present and next H2 bus generation, the availability of buses, the high cost and the maintenance of the innovative product. With concern to the H2 infrastructure, the problem are related to a lack of reliability, in technology point of view, but also to shortage of standardization, codes, regulation.

The hydrogen technologies will contribute to reduce the  $CO_2$  and other GHGs emissions locally, but also globally depending on how the fuel is produced. In addition, the FC are quite, so they lower the noise pollution.

Hyfleet CUTE has been the prosecution of the **ECTOS** and the **CUTE** projects

Another big project is **HyCHAIN**, which has just started in 2006. It will put on the road 158 vans including mini 10 buses, 30 scooters, 34 wheelchairs, 40cargo-bikes, 44 utility vehicles all powered by hydrogen fuel cells. The demonstrations will be implemented in France, Germany, Spain and Italy. The consortium is composed by 25 partners of which 2 University, 3 Research organization, 1 spin-off, 1 no-profit organization and the other ones are private companies.

The following four step approach will be implemented during the project: the project will start from existing prototypes of five low power fuel cell applications that (1) are optimised in design and functionality. (2) Pre-commercial manufacturing lines will be set up to reduce costs as well as to improve quality and (3) the required hydrogen distribution logistics and services (transport, distribution, dispensing) will be established based on an exchange of innovative refillable storage solution. (4) A network of comparable subprojects using the common demonstration vehicles will be implemented in the four regions of Europe. The deployment will enable a large and wide variety of end users to be attained in a cost effective way, providing favourable conditions for achieving a significant reduction both in manufacturing and operating costs.

Technical deployment is complemented by socio-economic research targeted at increasing public awareness and overcoming the main current barriers, such as confined public acceptance, lack of certification, training, etc. Dissemination and exploitation activities provide the framework for maintaining the momentum and triggering a sustainable market growth in several lines of applications.

The **Japan Hydrogen & Fuel Cell Demonstration** (JHFC) started in 2002 and it kept on in 2005 by another project called (JHFC2) which will be funded until 2010. The project involves both the vehicle technology, and the hydrogen station demonstration study and also stationary FC demonstration study. In particular, this paper will focuse on the vehicles and infrastructures, neglecting the stationary applications. For developing the JHFC2 8 automotive partners and 16
infrastructures builder have been involved as partners (in 2006). The reached results were important to allow the realization of the fleet, which was enlarged in 2007 including also hydrogen ICVs and FC Mini-Cars. With concern to the reforming type station, the goal was to increase the energy efficiency from 54% to 65%. In addition, the researchers are working to increase the hydrogen pressure storage up to 70MPa and third parties are involved to test operation under actual usage conditions. Some of the JHFC objectives are:

- To verify energy saving and environmental impacts
- To collect data for codes & standards development
- To conduct activities on public relations & educations
- To clarify issues for commercialization

To make the FC technology ready for the transport market some issues have to be reached by the researchers. The JHFC individualized some of those issues:

- Increasing durability by three times ;
- Havening the Fuel Cell Stack size;
- To guaranty the FC start in extremely cold conditions (-30°C);
- Lowering the FC cost to 1/100 the current one;
- Doubling the range.

The hydrogen fuelled vehicles and infrastructure will contribute to lower the environmental impacts, in particular in  $CO_2$  and other GHGs emissions point of views.

Ned T. Stetson of the US Dept. of Energy, showed the first-generation vehicle results and factors affecting fuel cell degradation. The **demonstration projects** carried out in the **US** have being provided important outcomes in validating H2 FC vehicles and infrastructure. It directly involved both car manufacturers and fuel distribution companies. Important results were reached:

- 77 vehicles and 14 stations deployed;
- 800,000 miles traveled, 30,000 kg H<sub>2</sub> produced or dispensed;
- 149,000 individual vehicle trips analyzed;
- 41 composite data products published;
- First public 700 bar station opened in U.S.

Although the vehicles and delivery stations are not ready for the market yet, because they are still in a development phase to improve the reliability and the costs, the project contributed to

- Systems Integration & Analysis
- Basic Research & Applied R&D for the technology validation:
- Manufacturing R&D
- Safety, Codes & Standards
- Education

The whole of those contributions will probably bring through a market transformation in transport sector and fuel delivery. Considering the intent to make the transport more sustainable, the project focused in particular to develop such a technology to decrease the  $CO_2$  and other GHGs emissions, to reduce the resources utilization, thus including fossil fuels, to limit the transport noise and some efforts were performed to ensure a high level of safety and reliability in mobility of people and goods.

Some of the analyzed aspects of the projects are schematically reported in Table 14

#### Table 14 Analysis: Large-scale demonstration projects

| Acronym | Research content | Consortium<br>balance | Achieved results Exploitation of the results |  | Potential exploitation of<br>results | market<br>readiness |
|---------|------------------|-----------------------|----------------------------------------------|--|--------------------------------------|---------------------|
|         |                  |                       | EU projects                                  |  |                                      |                     |

|                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | The experience                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                            |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| DEMONSTRA<br>TION<br>PROJECT<br>FOR<br>INTEGRATED<br>ENERGY<br>SAVING<br>URBAN<br>TRANSPORT<br>ATION<br>SYSTEMS<br>INCORPORA<br>TING HYBRID<br>BUS FLEETS | To reduce the consumption of<br>fossil fuels deriving from the<br>new technologies (advanced<br>hybrid and electric buses and<br>innovative batteries), to<br>compare the new<br>technologies and to setting<br>out of future policies, to<br>improve the urban traffic and<br>routes rationalization, to<br>increase the use of public<br>transport in comparison with<br>private one, to rationalize the<br>costs of public transport<br>system                                                                                                                                                                                                                                                                                                                                                          | 5 private<br>companies                                                                                                                                                                                                                                                            | Hybrid-series driven<br>minibus equipped<br>with sodium- nickel<br>chloride type batteries<br>was designed, built<br>and tested in real life<br>conditions. From the<br>technical point of<br>view, the verified<br>vehicles, excepts for<br>problems caused by<br>their 'youth', did not<br>evidence particular<br>problems with<br>reference to their<br>performances and<br>reliability. The bus<br>was designed in order<br>to travel "all electric"<br>up to 15-20 km, which<br>resulted more than<br>enough to cross the<br>historical centre. | permitted also to field-<br>test "Zebra" batteries<br>equipped with sodium-<br>nickel-chloride<br>electrochemical system,<br>thus highlighting further<br>positive qualities of the<br>accumulator, electric<br>capacity, specific<br>capacity for weight unit,<br>absence of "memory"<br>phenomena and<br>constant power supply<br>also at the final phase of<br>exhaust (hysteresis).<br>This type battery usage<br>was experimental at the<br>time and their tests<br>enhanced the<br>knowledge on real<br>working conditions. They<br>allowed further<br>applications in a number<br>of industrial<br>technologies. | The results are exploited<br>to introduce<br>second generation hybrid<br>buses.                                                                                                                                                                                                                                                                                                                  | Although<br>sufficiently<br>reliable for<br>real life<br>application,<br>this<br>technology<br>is<br>characterize<br>d by too high<br>investments<br>and<br>maintenance<br>costs to<br>make this<br>technology<br>ready for the<br>market. |
| CITYMOBIL                                                                                                                                                 | It aims to investigate the<br>applicability of innovative<br>systems such as Advanced<br>City Cars, Personal Rapid<br>Transit (PRT) and Cybercars<br>in the real life considering not<br>only the technological<br>challenges, but also the<br>human factor issue (e.g. the<br>safety perception) and the<br>regulation lakes about the<br>certifications and<br>homologation of those<br>innovative means of transport,<br>which is a key aspect to be<br>solved.                                                                                                                                                                                                                                                                                                                                         | 28 partners,<br>compromising<br>of city- and<br>regional public<br>authorities,<br>manufacturers<br>and suppliers of<br>advanced<br>transport<br>systems,<br>universities,<br>research<br>institutes and<br>public transport<br>organizations<br>from 10<br>European<br>countries | Some of the<br>prototypes and of the<br>infrastructures are<br>already realized and<br>displayed as<br>showcase during<br>events for both<br>technical persons:<br>three electric vehicles<br>(two Fiat Panda and<br>one new Fiat<br>"Cinquencento", (500)<br>with advanced driving<br>assistance,<br>platooning and<br>automated parking<br>capabilities, one<br>CyCab cybercar from<br>INRIA equipped with<br>an obstacle detection<br>system based on a<br>laser scanner                                                                          | Some possible<br>applications of the<br>technologies developed<br>during the projects have<br>already evaluated and<br>proposed, for example<br>the Advanced City Car<br>technologies would help<br>in the expansion of the<br>car-sharing service in La<br>Rochelle                                                                                                                                                                                                                                                                                                                                                    | Contribution to promote<br>innovation, to facilitate<br>accessibility and co-<br>modality, ensuring high<br>level of safety                                                                                                                                                                                                                                                                      | Not<br>available for<br>the market<br>yet.<br>Regulation<br>lakes about<br>the<br>certifications<br>and<br>homologatio<br>n of those<br>innovative<br>means of<br>transport,<br>are still key<br>aspect to be<br>solved.                   |
| CYBER CARS<br>2                                                                                                                                           | The aim is to improve the management as well as the security by vehicle-vehicle and vehicle-infrastructure communications and vehicles coordination in order to avoid obstacles, to improve the interaction between two vehicles running at close range (platooning) and during the phases of merging and crossing. In addition it will support the management of dual-mode vehicles, which are vehicles can be used in two ways, of car-sharing, of various operation modes (including full automation) and of the goods transport (with a variant). In other words, it will upgrade the so-called Cybernetic Transport System concept in order to apply those new communication technologies and new control algorithms to eight cybercars in order to finally realize three demonstrations in Heathrow. | 12 partners: 4<br>national<br>research<br>institutes, 4<br>industries, 4<br>universities                                                                                                                                                                                          | The acquired<br>experience allowed to<br>understand the<br>importance of<br>choosing a good site,<br>of focusing on a real<br>service, of facing<br>safety and<br>responsibilities<br>issues, of carrying a<br>follow-up                                                                                                                                                                                                                                                                                                                             | n.a. yet                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | The transition between<br>cybercars and Advanced<br>Driver Assistance<br>Systems ADAS vehicles<br>will be made easier with<br>the forecasted arrival of<br>"dual-mode" vehicles<br>which will offer an<br>automatic mode in<br>specific situations such<br>as platooning and in<br>specific locations such as<br>automated parking lots<br>and manual-assisted<br>mode in regular<br>situations. | Not<br>available for<br>the market.<br>Regulation<br>lacks                                                                                                                                                                                 |

| _            |                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                          |                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                        |
|--------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|              | Rome, Valencia                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                          |                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                        |
|              |                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                          |                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                        |
|              |                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                          |                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Hyfleet CUTE | Demonstration of the viability<br>of hydrogen powered fuel cell<br>buses in public transport in 9<br>European Cities                                                                                                                                                                                                                                                                            | 29 partners: 2<br>governmental, 3<br>automotive, 7<br>transport<br>companies, 9<br>energy<br>companies, 8<br>belonging to<br>academic and<br>consulting       | Decentralized<br>hydrogen production<br>in 7 European cities,<br>centralized produced<br>hydrogen for 2<br>European Cities and<br>9 new innovative high<br>pressure hydrogen<br>refuelling stations<br>were demonstrated.<br>The fleet is composed<br>by 47 hydrogen<br>powered buses in<br>regular public<br>transport service in 10<br>cities on 3 continents.<br>The total driven<br>mileage reached<br>equal 2.036.668 km<br>and the FC achieved<br>5000 working hours. | The project is enhancing<br>the awareness about<br>hydrogen technologies<br>reaching also non<br>technical public (The<br>bus users).<br>In technical point of<br>view, the results and the<br>analysis leaded to<br>improve FC and the<br>other hydrogen<br>technologies applied<br>during the project. | The research<br>implemented during the<br>project should carry<br>through the design and<br>development of a new FC<br>hybrid pre-prototype | Not ready<br>for the<br>market: gap<br>between<br>present and<br>next H2 bus<br>generation;<br>low<br>availability of<br>buses, high<br>initial and<br>the<br>maintenance<br>cost. With<br>concern to<br>the H2<br>infrastructur<br>e, the<br>problem are<br>related to a<br>lack of<br>reliability, in<br>technology<br>point of<br>view, but<br>also to<br>shortage of<br>standardizati<br>on, codes,<br>regulation. |
| HyCHAIN      | It will put on the road 158<br>vans including mini 10 buses,<br>30 scooters, 34 wheelchairs,<br>40cargo-bikes, 44 utility<br>vehicles all powered by<br>hydrogen fuel cells. The<br>demonstrations will be<br>implemented in France,<br>Germany, Spain and Italy                                                                                                                                | 25 partners: 2<br>University, 3<br>Research<br>organization, 1<br>spin-off, 1 no-<br>profit<br>organization<br>and the other<br>ones are private<br>companies | n.a.                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | n.a.                                                                                                                                                                                                                                                                                                     | n.a.                                                                                                                                        | Big lack for<br>the market<br>application                                                                                                                                                                                                                                                                                                                                                                              |
|              |                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                               | Non EU project                                                                                                                                                                                                                                                                                                                                                                                                                                                              | S                                                                                                                                                                                                                                                                                                        |                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                        |
| JHFC         | It involves both the vehicle<br>technology, the hydrogen<br>station demonstration study<br>and also stationary FC<br>demonstration study.<br>The objectives are:<br>-To verify energy saving and<br>environmental impacts<br>-To collect data for codes &<br>standards development<br>-To conduct activities on<br>public relations & educations<br>-To clarify issues for<br>commercialization | 8 automotive,<br>16<br>infrastructures<br>builder                                                                                                             | Realization of the<br>fleet (enlarged in<br>2007) including also<br>hydrogen ICVs and<br>FC Mini-Cars. With<br>concern to the<br>reforming type<br>station, the goal was<br>to increase the<br>energy efficiency from<br>54% to 65%. Tto<br>increase the<br>hydrogen pressure<br>storage up to 70MPa                                                                                                                                                                        | The real life working<br>conditions will bridge to<br>the market availability of<br>the hydrogen technology                                                                                                                                                                                              | The test operation under<br>actual usage conditions<br>will allow an improvement<br>of the hydrogen<br>technologies                         | To make the<br>FC<br>technology<br>ready for the<br>transport<br>market<br>some issues<br>have to be<br>reached:<br>-Increasing<br>durability by<br>3 times ;<br>-Havening<br>the FC stack<br>size;<br>-To<br>guaranty the<br>FC start in<br>extremely<br>cold<br>conditions (-<br>30°C);                                                                                                                              |

|                                                   |                                                                                                                                                                                                   |                                                                                               |                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                       | -Lowering<br>the FC cost<br>to 1/100 the<br>current one;<br>-Doubling<br>the range.                                                                                                                |
|---------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| U.S. Large<br>Scale<br>Demonstratio<br>n Projects | Realization of the first-<br>generation vehicle results and<br>factors affecting fuel cell<br>degradation. To provid<br>important outcomes in<br>validating H2 FC vehicles and<br>infrastructure. | It directly<br>involved both<br>car<br>manufacturers<br>and fuel<br>distribution<br>companies | -77 vehicles and 14<br>stations deployed;<br>-800,000 miles<br>traveled, 30,000 kg<br>H2 produced or<br>dispensed;<br>-149,000 individual<br>vehicle trips analyzed;<br>-41 composite data<br>products published;<br>-First public 700 bar<br>station opened in U.S. | It contributed to<br>–Systems Integration &<br>Analysis<br>–Basic Research &<br>Applied R&D for the<br>technology validation:<br>–Manufacturing R&D<br>–Safety, Codes &<br>Standards<br>–Education | For further exploitation,<br>the NREL-National<br>Renewable Energy<br>Laboratory provides the<br>direct access to all<br>composite data products<br>concerning the hydrogen<br>and FC research on the<br>webpage:<br>http://www.nrel.gov/hydro<br>gen/cdp_topic.html. | The vehicles<br>and delivery<br>stations are<br>not ready for<br>the market<br>yet, because<br>they are still<br>in a<br>development<br>phase to<br>improve the<br>reliability<br>and the<br>costs |

Using the sustainability definition, in Table 15 a project mapping is proposed, considering the objectives of the projects presented at the conference.

| Table | 15 Projects | linkages to | ) sustainable mob | ilitv obiectives. | Large-scale demons | tration projects |
|-------|-------------|-------------|-------------------|-------------------|--------------------|------------------|
|       |             |             |                   |                   |                    | r of the second  |

| Acronym                                                                                                                              | equity &<br>accessibility | safety & reliability | co-modality | energy & land use | renewable energy | emissions & noise | CO2 emissions | technology &<br>development | economic return | regional<br>development |
|--------------------------------------------------------------------------------------------------------------------------------------|---------------------------|----------------------|-------------|-------------------|------------------|-------------------|---------------|-----------------------------|-----------------|-------------------------|
| DEMONSTRATION<br>PROJECT FOR<br>INTEGRATED ENERGY<br>SAVING URBAN<br>TRANSPORTATION<br>SYSTEMS<br>INCORPORATING HYBRID<br>BUS FLEETS |                           | *                    |             | **<br>(ENERGY)    |                  | *                 | **            | *                           |                 |                         |
| CITYMOBIL                                                                                                                            | **                        | **                   | **          | *                 |                  |                   |               | **                          |                 |                         |
| CYBER CARS 2                                                                                                                         | **                        | **                   | **          | *                 |                  |                   |               | **                          |                 |                         |
| Hyfleet CUTE                                                                                                                         |                           | *                    |             | *<br>(ENERGY)     | *                | *                 | **            | **                          |                 |                         |
| HyCHAIN                                                                                                                              | *                         | *                    |             | *                 | *                | *                 | **            | **                          |                 |                         |
| JHFC                                                                                                                                 | *                         | *                    |             | *                 | *                | *                 | **            | **                          |                 |                         |
| U.S. Large Scale<br>Demonstration Projects                                                                                           |                           | *                    |             | *                 | *                | *                 | **            | **                          |                 |                         |

Notes: \*\* - key objective of the project, \* - one of the objectives of the project

#### A look out overseas

The transport problems have to be considered globally, because they involve more or less all the countries and all of them are implementing a strategy to improve the transport but in a sustainable way.



Figure 1. Traffic jam

Look at the Figure 1. Could you get which street is in the picture? Probably not. The reason is that the traffic problems are spread out in every continent. For this reason several demonstration projects are implemented more or less in all the globe.

For example, a number of demonstration projects are making hydrogen fleets run. As mentioned before, the CUTE Hyfleet project involves Europe, China and Australia. In California, in the USA, there is one of the biggest projects in the world on it: the **Fuel Cell Partnership**. Another significant project is the **California's Hydrogen Highway Network**, which should be achievable by 2010, and the **HyRoad**, the AC transit's hydrogen fuel cells programme, and on 4/10/2007 the CT Transit used the New England's First Fuel Cell-powered Hybrid Bus in its bus service in Hartford.

In Canada the **Hydrogen Highway** will be realized (Canada). It is one of the world's most integrated and advanced hydrogen and fuel cell technology demonstration programs, showcasing growing the British Colombia's network of hydrogen fuelling stations and end-use driven applications. It will connect the National Research Council (NRC) on the University of British Columbia campus, the North Vancouver, Surrey, Vancouver, Vancouver International Airport, Victoria, Whistler. It will largely used during the Vancouver 2010 Winter Games.

Another very big project is implemented in Japan, the **JHFC** - Hydrogen & Fuel Cell Demonstration Project (**Japan**). In the frame of this project a number of vehicles are hydrogen powered: buses, cars, carts, wheelchair.

In **China** the **UNDP-GEF-China fuel cell bus project** approved five countries who carry out total 46 FC Buses demonstration projects in six cities. Another Chinese projects is **Domestic FCV development projects,** including the realization of total five FC buses and ten cars with hybrid

configuration. The construction of Beijing Hydrogen Park is promoted and funded by China MoST and Beijing Municipal Government and it was initiated in 2004. Beijing SinoHytec Limited, BP and Beijing Tongfang Co.Ltd as the project stakeholders cooperate to construct the first hydrogen fuelling station in China. Some demonstrations will be available during the Beijing Olimpic Games. In Singapore, BMW, Daimler and other companies have worked together to the SINERGY project, which aims to realize another hydrogen fleet.

In **Australia** the STEP project prosecuted and merged into the intercontinental Hyfleet: CUTE. About the biofuel applications, the leader is **Brazil**, thanks to a long tradition in this technology. In fact, the ethanol cars sold pick was realized in 1985, after the 70s oil crisis. After that date, the ethanol cars market decreased, but in the last years it is increasing again. In 2005 the number of sold flexi vehicles, which can use alcohol, was around 900 000 against about 600 000 which can use only gasoline and about 140 000 which can use only diesel. With its  $15 \times 10^{9}$ l/year of ethanol and  $176 \times 10^{6}$  l/year of biodiesel produced, Brazil is the first biofuel maker in the world.

Concerning South **Africa**, a demonstration of a sustainable transport plan will be implemented for World Cup 2010 in the framework of **SOUTH AFRICA MOBILITY** project, in order to make the public transport more safe and accessible during the World cup and beyond. Some other improvements of the transport in the City of Johannesburg are envisaged:

- a 122 km BRT- **Bus Rapid Transit** network will be completed by 2009 as a first phase. This is the largest investment by any South African city in respect of public transport. The project is linked to other development initiatives such as urban design, land use restructuring, service improvements for longer distance customers and inner city node strengthening.
- The National Department of Transport in partnerships with Provincial departments of transport have been experimenting with a Bicycle roll-out project, namely Shova Kalula targeted at scholars, women and farm-workers, all in the rural areas. Some of the successes and failures of the initiative have been reported at the annual Southern African Transport Conference. In short, the project has attempted to put together in one project such things as job creation in the form of repair workshops, spare parts, affordable mobility (subsidised bicycles) and improved livelihoods (improved access to schools).
- In terms of Mobility Management/TDM: there has been a number of demonstration projects across the country, with limited successes. Also a system has experimented with the use of cell phones to profile the mobility patterns of people to supplement travel diaries. The City of Johannesburg is running an internet base ride sharing scheme.

South Africa is also supporting very innovative solutions and for this reason it will be hosting a Solar Powered Car race in this year (2008) between Johannesburg, Cape Town and Durban. The University of Kwazulu Natal has been encouraging their students to participate in the event.

The report intended to conclude providing some spot examples of what is happening in the other continents about transport technology applications to make mobility more sustainable.

### 1.8 Lessons learnt and conclusions

Some of the most important lessons learnt during the implementation of the project MOBIDAYS are reported and some suggestions on how to overcome the problems we encountered are provided. In particular, the main difficulty in MOBIDAYS was the limited availability of information on results obtained and problems faced during the implementation of EC-funded projects on sustainable mobility.

The most important **problems** met by all the partners of MOBIDAYS are:

Finding detailed information on the outcomes of some projects, in particular on FP5 1. projects and before (the Cordis database does not include all the projects). The EC has recently put in place useful dissemination tools, such as the DG TREN Transport Research Knowledge Centre and ManagEnergy websites, as well as the publication of FP project synopses, but those instruments are still not well linked to each other. As a result, it is often the case that detailed information on some projects is only available on one of these tools but not on others. As an example, only basic information on the Scientific Support for Policies project HEATCO can be found on the CORDIS database, whereas slightly more information can be found on the DG Research website under: http://ec.europa.eu/research/fp6/ssp/heatco\_en.htm and detailed information including some of the downloadable deliverables is available on the Transport Research Knowledge Centre website (http://www.transport<u>research.info/web/projects/project\_details.cfm?id=11056&page=outline</u>). Unfortunately, neither of these sources provides a link to the others.

- 2. In some cases, even if some information of a project is available on the Cordis Database, it was difficult to find out about specific outputs and deliverables produced by the project and the potential recipients of its results.
- 3. Understanding specific roles of the partners involved in projects examined; in particular, it was not always possible to find out what partner worked on a specific deliverable, carried out an analysis or developed a specific component as part of the project.
- 4. Finding out if the results of the EC funded projects considered found any practical application after the end of the projects. It is very hard to trace what happened to the technologies developed as part of EC-funded projects once the project is completed.
- 5. In order to gather information on the results of EC-funded projects on sustainable mobility, we initially developed a short questionnaire, which was distributed to the coordinators of the relevant projects. However, the rate of completion of these questionnaires was rather low and this suggested limited interest by project coordinators to supply detailed information, particularly in the case of project that have already been completed since some time.
- 6. Engaging in participants of the completed projects: most of the contacts are not available anymore, the websites of the completed projects have been discontinued and in some cases even finding out the name of the EC scientific officer in charge of the project is not easy.
- 7. It proved difficult to involve representatives of national and local governments in all countries where conferences were organized (Czech Republic, United Kingdom and Italy).
- 8. Project representatives who presented their projects at the conferences generally did not go into much detail of specific problems encountered and outcomes, despite having been explicitly asked to do so. With some exceptions, the speakers generally avoided to talk about the problems met during the implementation of the projects.

The consortium tried to develop some **solutions** for the mentioned problems:

- 1. The MOBIDAYS consortium has been proposing some solutions the EC could implement. In particular, the Cordis database could be improved and systematically linked to the other relevant tools developed by the EC. In addition, a new database could be built which for all relevant projects collects data, models, tools developed, deliverable reports and, the 'Plan for using and disseminating the knowledge'. Building the new database would not require much additional effort from the Commission provided a clause was added to EC funding contracts that makes it compulsory for the project consortium do deliver all the necessary material in a format that is compatible with the needs of the database before the project ends. In any case, most of this material is already encompassed by current EC contracts and therefore compiling this information in a database should be relatively straightforward.
- 2. The selection of the projects focused mainly on the basis of the information in the Cordis database. In some cases people were directly contacted by phone, and were asked for information about the project carried out. In addition, information on EC brochures and conferences proceedings was considered when selecting projects. Storing project websites on an EC system once the projects are completed could be very useful in order to be able to access information on past projects.
- 3. In order to address the problem of keeping track of the commercial exploitation of technologies originally developed as part of EC-funded projects, the introduction of a labeling scheme could be considered.
- 4. MOBIDAYS tried to contact the persons involved in completed projects, looking for the contacts on the EC website. In addition, even if the speakers disseminated projects of FP6 during the conference, during the meeting they had the opportunity to bring their experiences of the previous projects if they were involved in other projects FP5 and before.

- 5. Even if directly contacted, participation of representatives from local and national governments was very low in all the conferences.
- 6. Realizing that the speakers rejected to disseminate the problems met during the implementation of the projects to a big audience (as the public of a conference), and considering that a conference is not the proper place to discuss because of the time management which characterize a conference itself, after the conference in Prague, the MOBIDAYS consortium decided to organize and realized two meetings in concomitance of the conferences in London and Rome. Only the MOBIDAYS consortium and the speakers of each conference were invited to take part. In those round tables the participants had the possibility to informally discuss general as well as specific problems encountered about the problems met, mainly about the non technical ones (e.g. consortium management, legislation lakes, relationship with the EC, etc) and some solutions were proposed. The meetings appeared to be more effective instrument to discuss the problems and to propose solutions. For dissemination and further exploitation of the projects results, maybe, a well targeted meeting between the suppliers (the people or the companies who developed a product during a project) and the clients (the potential costumers of the developed technology) could be organized, like the industry does to promote the new products.

# 2 Dissemination and use

### Section 1 - Exploitable knowledge and its Use

MOBIDAYS carried out an analysis of the projects on sustainable transport, in particular focusing on the EC funded projects, so the knowledge developed as part of the project consists in information on the relevant projects and their outcomes.

At the start of the project MOBIDAYS a working **definition of sustainable transport** was elaborated by the consortium. This definition is reported in all the brochures written inside MOBIDAYS and was used when assessing EC-funded projects and their impact on sustainability of road transport.

All the collected information about the analysed projects and the outputs of the project is included in the **final report**. It contains a database of the selected projects, for each of which the following information is provided :

- project Acronym
- project full name
- EC Framework Programme
- Coordinator
- Partners
- Project website
- budget
- project timing

In addition, each project is evaluated considering the research contents, the consortium balance, the achieved results their current and potential exploitation of results, the market readiness of developed technology/know-how.

The report also contains the comments, the problems met and some solutions proposed by the speakers and the consortium of MOBIDAYS, particularly based on discussion held during the meetings and the conferences. The intention is for this report to be a useful information source for the Commission and for people working on EC project on sustainable mobility.

The intended result is to provide feedback to the EC and to create a window of communication between the EC and the projects partners to improve future EC-funded projects in the area of sustainable mobility.

Some of the proposed solutions contained in the report can be implemented in future projects or implemented by the EC.

| Over view table                                         |                                            |                                 |                                    |                                    |                                         |
|---------------------------------------------------------|--------------------------------------------|---------------------------------|------------------------------------|------------------------------------|-----------------------------------------|
| <b>Exploitable</b><br><b>Knowledge</b><br>(description) | Exploitable<br>product(s) or<br>measure(s) | <b>Sector(s)</b> of application | Timetable for<br>commercial<br>use | Patents or other<br>IPR protection | Owner & Other<br>Partner(s)<br>involved |
| 1. Sustainable<br>transport<br>definition               |                                            | Transport<br>projects           | 2008                               |                                    | MOBIDAYS<br>consortium                  |
| 2. Final report                                         |                                            | Transport<br>projects           | 2008                               |                                    | MOBIDAYS<br>consortium                  |
|                                                         |                                            |                                 |                                    |                                    |                                         |

#### **Overview table**

## Section 2 – Dissemination of knowledge

Further information about the Dissemination of knowledge regarding the final event will be included in the 'Media Impact analysis', which is a deliverable will be provided in the second reporting period.

| Actual<br>Dates | Туре                                                                                         | Type of audience         | Countries addressed | Size of audience | Partner<br>responsible<br>/involved |
|-----------------|----------------------------------------------------------------------------------------------|--------------------------|---------------------|------------------|-------------------------------------|
| June 7, 2007    | Press release, press                                                                         | General public and press | Eurpe               |                  | UK                                  |
| June 7, 2007    | Press release, press                                                                         | General public and press | Czech Republic      | -                | UK                                  |
| June 20, 2007   | Press release, press                                                                         | General public and press | Czech Republic      | -                | UK                                  |
| 06/11/07        | Press release, press                                                                         | General public and press | Italy               | -                | CIRPS                               |
| 06/11/07        | Press release, press                                                                         | General public and press | Italy               | -                | CIRPS                               |
| 07/11/07        | Press release, press                                                                         | General public and press | Italy               | -                | CIRPS                               |
| 07/11/07        | Press release, press                                                                         | General public and press | Italy               | -                | CIRPS                               |
| 09/11/07        | Press release, press                                                                         | General public and press | Italy               | -                | CIRPS                               |
| 12/11/07        | Press release, press                                                                         | General public and press | Italy               | -                | CIRPS                               |
| December07      | Press release, press                                                                         | General public and press | Italy               |                  | CIRPS                               |
| 28/12/07        | TV                                                                                           | General public           | Italy               | -                | CIRPS                               |
| 28/12/07        | TV                                                                                           | General public           | Italy               | -                | CIRPS                               |
| 29/12/07        | TV                                                                                           | General public           | Italy               | -                | CIRPS                               |
| 30/12/07        | TV                                                                                           | General public           | Italy               | -                | CIRPS                               |
| 04/06/07        | Teaser                                                                                       | General public and press | Italy               | -                | CIRPS                               |
| september-07    | Teaser                                                                                       | General public and press | Italy               | -                | CIRPS                               |
| october-07      | Teaser                                                                                       | General public and press | Italy               | -                | CIRPS                               |
| 16/10/07        | Teaser                                                                                       | General public and press | Italy               | -                | CIRPS                               |
| 16/10/07        | Teaser                                                                                       | General public and press | Italy               | -                | CIRPS                               |
| 16/10/07        | Teaser                                                                                       | General public and press | Italy               | -                | CIRPS                               |
| 16/10/07        | Teaser                                                                                       | General public and press | Italy               | -                | CIRPS                               |
| 16/10/07        | Teaser                                                                                       | General public and press | Italy               | -                | CIRPS                               |
| 16/10/07        | Teaser                                                                                       | General public and press | Italy               | -                | CIRPS                               |
| 16/10/07        | Teaser                                                                                       | General public and press | Italy               | -                | CIRPS                               |
| 16/10/07        | Teaser                                                                                       | General public and press | Italy               | -                | CIRPS                               |
| 1//10/07        | Teaser                                                                                       | General public and press | Italy               | -                | CIRPS                               |
| 1//10/07        | Teaser                                                                                       | General public and press | Italy               | -                | CIRPS                               |
| 1//10/07        | Teaser                                                                                       | General public and press | Italy               | -                | CIRPS                               |
| 18/10/07        | Teaser                                                                                       | General public and press | Italy               | -                | CIRPS                               |
| 30/10/07        | Teaser                                                                                       | General public and press | Italy               | -                | CIRPS                               |
| 31/10/07        | Teaser                                                                                       | General public and press | Italy               | -                | CIRPS                               |
| 01/11/07        | Teaser                                                                                       | General public and press | Italy               | -                | CIRPS                               |
| 02/11/07        | Teaser                                                                                       | General public and press | Italy               | -                | CIRPS                               |
| 02/11/07        | Teaser                                                                                       | General public and press | Italy               | -                | CIRPS                               |
| 04/11/07        | Teaser                                                                                       | General public and press | Italy               | -                | CIRPS                               |
| 04/11/07        | Teaser                                                                                       | General public and press | Italy               | -                | CIRPS                               |
| 05/11/07        | Teaser                                                                                       | Conoral public and press | Itaby               | -                |                                     |
| 05/11/07        | Teaser                                                                                       | Conoral public and press | Italy               | -                |                                     |
| 00/11/07        | Teaser                                                                                       | General public and press | Italy               | -                | CIRPS                               |
| september_07    | Teaser                                                                                       | General public and press | Italy               | -                | CIRPS                               |
| october-07      | Teaser                                                                                       | General public and press | Italy               |                  | CIRPS                               |
| 16/10/07        | Teaser                                                                                       | General public and press | Italy               | -                | CIRPS                               |
| 18/06/07        | Conference Prague                                                                            | Research General public  | Furope              | 90               |                                     |
| 21/06/07        | Conference London                                                                            | Research General public  | Europe              | 70               | ICL-IST                             |
| 07/11/07        | Conference Rome                                                                              | Research General public  | Europe              | 100              | CIRPS                               |
| 06/11/07        | Exhibition                                                                                   | Industry, press general  | Europe              | 1000             | CIRPS                               |
| 07/11/07        |                                                                                              | public                   | Larope              |                  |                                     |
| 18/06/07        | Brochure: European<br>research on socio-economic<br>barriers to sustainable<br>mobility      | Research General public  | Europe              | 1000             | UK                                  |
| 21/06/07        | Brochure: European<br>research on vehicles for<br>sustainable mobility<br>Brochure: European | Research General public  | Europe              | 100              | IST                                 |
| 06/11/07        | Brochure: European<br>research on infrastructures                                            | Kesearch General public  | Europe              | 100              | ICL                                 |

#### **Overview table**

| Actual<br>Dates                | Туре                                                                                                  | Type of audience              | Countries<br>addressed | Size of<br>audience           | Partner<br>responsible<br>/involved            |
|--------------------------------|-------------------------------------------------------------------------------------------------------|-------------------------------|------------------------|-------------------------------|------------------------------------------------|
|                                | for sustainable mobility                                                                              |                               |                        |                               |                                                |
| 06/11/07                       | Brochure: Large-scale<br>demonstration projects on<br>sustainable mobility in<br>Europe and worldwide | Research General public       | Intercontinental       | 500                           | CIRPS                                          |
| February 2007                  | Project web-site                                                                                      | Research General public       | Intercontinental       | -                             | CIRPS with<br>contributions of<br>ICL, UK, IST |
| November<br>2007               | Posters                                                                                               | Research General public       | Italy                  | -                             | CIRPS                                          |
| June 2007                      | Electronic Flyers                                                                                     | Research General public       | Europe                 | -                             | UK                                             |
| September<br>2007              | Electronic Flyers                                                                                     | Research General public       | Europe                 | -                             | ICL-IST                                        |
| From 01/06/07<br>to 09/06/2007 | Direct e-mailing                                                                                      | EC Project coordinators       | Europe                 | 150                           | CIRPS                                          |
| 01/06/2007                     | Direct e-mailing                                                                                      | Research Press General public | Europe                 | 500                           | CIRPS                                          |
| 06/06/2007                     | Direct e-mailing                                                                                      | Research Press General public | Europe                 | More than<br>7000<br>contacts | CIRPS                                          |
| 02/07/2007                     | Direct e-mailing                                                                                      | Research Press General public | Europe                 | 500                           | CIRPS                                          |
| 12/09/2007                     | Direct e-mailing                                                                                      | Research Press General public | Europe                 | More than<br>7000<br>contacts | CIRPS, ICL                                     |
| 16/10/2007                     | Direct e-mailing                                                                                      | Research Press General public | Europe                 | More than<br>7000<br>contacts | CIRPS                                          |
| 02/11/2007                     | Direct e-mailing                                                                                      | Research Press General public | Europe                 | More than<br>7000<br>contacts | CIRPS                                          |
|                                | Direct e-mailing                                                                                      | Research General public       | Europe                 | More than<br>7000<br>contacts |                                                |

## Bibliography

European Bio-Energy Projects 1999-2002

European Fuel Cell and Hydrogen Projects 1999-2002

European Fuel Cell and Hydrogen Projects 2002-2006

European Hydrogen and Fuel Cell Projects 2004

Green paper for transport-Towards a new culture for urban mobility 2007

Keep Europe moving-mid-term review of the European Commission's 2001 transport White Paper, 2006

Projects Synopses: Sustainable Surface Transport Research Technological Development and Integration, 2002 – 2006

Project Synopses: European Fuel Cell and Hydrogen Projects, 2002-2006

White paper: European transport policy for 2010, 2001

## List of the tables

Table 1. Summery table of the projects on Socio-economic barriers

Table 2 Speakers and projects presented at the Prague conference

Table 3 Project linkages to sustainable mobility objectives.

Table 4 Consortium balance according to participating institution country

Table 5 Analysis: Socio-economic projects

 Table 9 Project summery. Projects on infrastructures

Table 10. Conference presentation

Table 11 Analysis: infrastructures projects

Table 12 Project summery demonstration projects

Table 13 Rome presentations

 Table 14 Analysis: Large-scale demonstration projects

Table 15 Projects linkages to sustainable mobility objectives. Large-scale demonstration projects