Tape designation	T55% AS4/PES-4100
Carbon fibers	Hexcel HS-CP-5000-AS4
Fiber volume fraction	55% ± 3.00%
Matrix material	Sumitomo Sumikaexcel Polyethersulfone
	4100 MP (PES)
Tape width	25.375 ± 3.00%
Tape thickness	0.1372 mm ± 5.00%

Table 1Summarized product data of T 55% AS4 / PES-4100 0.14 x 25.4

Figure 2 Flow-chart of the DEfcodoor production concept

Figure 3 Feasibility Article DEfcodoor Project

Figure 4 Planed demonstrators for the GRC6.2 Project (ECO-Fairs): a) and b) Radom; c) sponson fairing (AW)

Table 2Welding and thermal properties of PES and PPS

		DEfcodoor	ECO-Fairs
Polymer Type		PES	PPS
		Polyesthersulfone	Polyphenylenesulfide
Microstructure		Non-crystalline (amorphous)	Semi-crystalline
T_{g}		215°C	85°C
T _m		-	285°C
Long-term Heat R	lesistance	160 – 200°C	200 – 240°C
Water absorption		Partially	Very low
Possible welding partners	Structural	PEEK, PSU	-
	Adhesive	PBT, PET, PC, PA66	PA66

	EXTERNAL HEATING	INTERNA	INTERNAL HEATING		
Stage	Hot Gas	ELECTROMAGNETIC	MECHANICAL		
Two-	Heated Tool	Radiant Welding (Infrared; Laser)	Ultrasonic		
itage	Implant Resistance	Microwave	Vibration		
One-	Dual-Resin-Bonding	Induction	Spin		

Figure 5 Classification of different welding methods for TPCs

- o Not suitable for the disassembly of TPCs
- + Only adaptable for the disassembly of TPCs under high research effort
- ++ Adaptable under medium research effort
- +++ Good suitability for the disassembly of TPC structures, with low or no research effort

Heating /	Evaluation	
Bulk heating	Co-consolidation	0
	Hot-melt-thermoplastics	0
	Dual-resin bonding	++
Frictional heating	Spin and vibration welding	0
	Ultrasonic welding	0
Thermal heating	Hot-tool welding	0
	Hot-gas welding	0
	Infrared welding	0
	Laser welding	+
Electromagnetic heating	Dielectric welding	+
	Microwave	+
	Resistance welding	+++
	Inductive welding	+++

 Table 3
 Benchmark overview of separation scenarios from literature

2 N / 320 °C	3 N / 320 °C	5 N / 320°C	0 N / 350°C

Figure 6

Selection of separated coupons by means of inductive heating

Figure 7 Schematic of the pull-out effect of fiber tows at the edge of the heating region for 45° plies

Figure 8 a) Edge effect as a result of changing geometry; b) Matrix deterioration as a result of the edge effect

Figure 9Micrograph of disassembled coupon: Plate is delaminated, patch remains consolidated

Figure 10 Conceptual layup of the separation layer with minimum insulation layer (glass fiber fabric)

Figure 11 Stitching pattern of resistive implant

Figure 12 right: Test set up for disassembly trials on coupon level; left: exemplary thermography image

Figure 13 Final layup of separation layer

Figure 14 Light optical micrographs of the embedded final design of the separation layer

$$P = \frac{U^2}{R}$$
 Eq. 1

$$R_{1} = R_{ref} \cdot \left[1 + \alpha_{ref} \left(T_{1} - T_{ref} \right) \right]$$
 Eq. 2

Figure 16 Picture of test specimen 2 (a) and test specimen 3 (b) after separation test. Exemplary thermographic image of disassembly coupon (c)

Figure 17 Single lap shear and G1c test specimens

Figure 19

SLS Test Results

Figure 20

G1c fracture mechanics tests

$$R_{tot} = \frac{1}{\sum \frac{1}{R_i}} = \frac{1}{\frac{1}{R_1} + \frac{1}{R_2}}$$
Eq. 3

Measured Values Calculated Values U (V) T (°C) R(T) (Ω) Pru (W) I_{calc} (A) 2 8,9 65 8,42 2,05 115 2,33 19,86 2,92 6,8 Inclusion of insulation layer (at approx.. 172/179°C) 225 10,8 3,06 38,16 3,53 13,7 3,55 52,82 300 3,86

 Table 4 Discrete power levels during the disassembly trial on demonstrator level with correspondent calculated values.

Figure 21

Heating ramp for the disassembly test on demonstrator level (average values)

Figure 22 Exemplary picture and thermographic image of the conducted test at approx. 305°C.

Figure 23Disassembled omega stringer from skin