SMART FIXED WING AIRCRAFT (SFWA) REPORT

WP 1.1.3 LAMINAR WING TECHNOLOGIES PROJECT STATUS cleancompFIELD – **Final report**

Clean-Lasersysteme GmbH Edwin Büchter CEO/President

Herzogenrath/Aachen Germany www.cleanlaser.com buechter@cleanlaser.com

WORKPACKAGES cleancompFIELD

OVERVIEW WORKPACKAGES PERSON MONTHS AND STATUS

	Content Report & design work	Laser Head	Exhausting System	Shielding System	Test report
Start month	1	2	3	6	9
Progress	completed	completed	completed	completed	completed
Deliverables	Design (conceptional drawing)	Existing optics modified Engineering support (in progress), manufacturing in progress, inrterfaces modified	 Re-designed nozzles concept of suitable fume extraction 	 Schielding system concept Flexible schielding system selected 	Test report, drawing
Scheduled end month	3	6	9	18	22
Revised end month	8 completed	16 completed	18 completed	17 Completed	22 Completed

WORKPACKAGE 1: CONTENT REPORT & DESIGN WORK

DELIVERABLE: CONCEPTIONAL DESIGN WORK

General Concepts:

- BOX Design for laser class 1 covered workspace Front door, space for small samples (~100x100mm) suitable for basic testing connection for fume extraction
- Open style laser head, attachable to robot unit, nozzle (optimized position attached) distance sensor applicable no sample size restrictions
- Alternative concept: 1D Scanner (compact version) with integrated distance and plasmar sensor for ablation signal control (in line production)

Final design and concept has been selected

Final report 2012 cleancompfield by Edwin Büchter

Deutscher **Umweltpreis**

OUR LASER OPTICS FOR CLEANING

EXAMPLES – SOLUTIONS FOR (ALMOST) EVERY APPLICATION

Automated Optics

- OSA 20
- OSA 70
- Stylus

2D Optics (manual or automated use)

- Stamp 10
- Stamp 14

Handheld Optics

- Stylus
- OSH 20
- OSH50
- OSH80

Final report 2012 cleancompfield by Edwin Büchter

Deutscher Umweltpreis

WORKPACKAGE 2: LASER HEAD

DELIVERABLE: Existing optics modified Engineering support

Optics design:

- Synergic design combining the possibility of small and big area treatment optional upgrade with plasma sensor
- Easy entry flip door and optional place on surface treatment
- Front access window (class 1)
- Interlock switches
- Airflow optimization applied
- Focus shift under investigation not scope of the project
- Engineering support (for IFAM) regarding parameter selection is in completed

WORKPACKAGE 2: DETAILS

Final report 2012 cleancompfield by Edwin Büchter

Deutscher Umweltpreis

WORKPACKAGE 2 : LASER HEAD DRAWING (delivered)

Final report 2012 cleancompfield by Edwin Büchter

Deutscher Umweltpreis

WORKPACKAGE 2 and 4: LASER HEAD AND LASER SAFE ENCLOSURE

DELIVERABLE: Existing optics modified & engineering support ongoing) DELIVERABLE: Shielding system for modified optics (design completed)

Optics design of the safetyBOX:

- Re-designed optics and shielding system design work is completed, released by IFAM
- Manufacturing and assembly completed
- Installation at IFAM completed
- Ongoing parameter support and application testing at IFAM will be proceeded

WORKPACKAGE 2 and 3: EXHAUSTING SYSTEM AND NOZZLE

1. DELIVERABLE: Re-designed nozzles (integrated in laser head)

Nozzle design:

- For local coverage (in field)
- The housing is completed in design has been delivered to IFAM
- Optional camera can be attached

WORKPACKAGE 3: EXHAUSTING SYSTEM AND NOZZLE

1. DELIVERABLE: Re-designed nozzles (integrated in laser head)

Nozzle design:

- Air flow optimisation by generation of laminar flow
- Cross jet investiagated
- Investigations of air flow and particle & dust extraction/collection based on 1D Optics
- Worstcase simulation (sandblaster and adhesive tape)
- Engineering support (for IFAM) regarding parameter selection done

WORKPACKAGE 3: EXHAUSTING SYSTEM AND NOZZLE

1. DELIVERABLE: Re-designed nozzles (integrated in laser head)

Nozzle design:

- Air flow optimisation (nozzle diameter)
- Cover gas support attachable
- Best collection rate by distance adjustment
- Function of nozzle has been tested

VIDEO NOZZLE TESTING – AIR FLOW INVESTIGATIONS

WORKPACKAGE 3: FUME EXTRACTION UNIT

DELIVERABLE #4: Potential Concept of suitable fume extraction

Filter unit requirements:

- Compact size
- Suitable filter capacity
- Environmental friendly
- Particle filter Standard HEPA13 or more, optional ULPA Filters applicable
- Gas filter cartridge
- High pressure suitable flow rate (adjustable)
- Low noise, safe
- <u>Potential</u> solution (result of market investigation):
- Turbine powered filter unit, noise damped
- Modular design with controler
- Pre coating optional
- Self cleaning particle filters

Final report 2012 cleancompfield by Edwin Büchter

Deutscher Umweltpreis

•

TEST SETUP FOR PROTECTIVE CURTAINS

"CLEANLASER PROTECTIVE CURTAIN CURRENT STATUS"

RADIATION EXPOSURE 10 SECONDS 12mm Diameter, 500W

Target nach 10 Sek

Vorderseite nach 10 Sek

Rückseite nach 10 Sek

Spot-	Arbeits-	Bestrahldauer	Beschädigung	Beschädigung	Durchlässig	Brennt nach	Selbst-
durchmesser	abstand	10 Sek	Vorderseite	Rückseite	nach		löschend
12 mm	323 mm	n.i.O.	< 1 Sek	< 1Sek	ca. 2 Sek	ca. 2 Sek	Ja

Alternative Material – More flexible High mechanical strength

RADIATION EXPOSURE 10 SECONDS 50mm Diameter, 500W

Target nach 10 Sek

Vorderseite nach 10 Sek

Rückseite nach 10 Sek

Spot-	Arbeits-	Bestrahldauer	Beschädigung	Beschädigung	Durchlässig	Brennt nach	Selbst-
durchmesser	abstand	10 Sek	Vorderseite	Rückseite	nach		löschend
50 mm	750 mm	i.O.	7 Sek	7Sek	15 Sek	14 Sek	Ja

"CLEANLASER PROTECTIVE CURTAIN RESULT STATUS"

RADIATION EXPOSURE 1000 SECONDS 50mm Diameter, 500W

Target nach 1000 Sek

Vorderseite nach 1000 Sek

Rückseite nach 1000 Sek

Spot-	Arbeits-	Bestrahldauer	Beschädigung	Beschädigung	Durchlässig	Brennt nach	Selbst-
durchmesser	abstand	1000Sek	Vorderseite	Rückseite	nach		löschend
50 mm	695 mm	i.O.	keine	keine	nicht	nicht	Ja

Further TESTING RESULTS

NEW CURTAIN SYSTEM MATERIAL HAS BEEN SELECTED

Different material was under investigation

- One material combination was capable regarding:
 - Laser stability
 - Tests with up to 500W average power have been completed according to EN 60825-4
 - Mechanical stability (long term bending)
 - Initial test have shown a better stability compared to existing material
 - Long term stress tests have been sucessfully completed

WORKPACKAGE 4: SHIELDING SYSTEM (Demonstrator)

6th DELIVERABLE: Schielding system/Material

Shielding requirements:

- Laser shielding system for flexible protection against laser radiation (only nexessary if class 4 laser is in use
- Multi layer curtain system with glass fibre based curtains in combination with metalised protection layer
- Personal protective wear: laser glasses
- Current situation: curtain flexibility is limited due to inner aluminium foil layer
- Increased mechanical stability has been achieved

ADDITIONAL INFORMATION: ADHESIVE BONDING OF CFRP - RESULTS

Laser ablated material (by LZH)

Laser Bonding preparation with cleanLASER

Final report 2012 cleancompfield by Edwin Büchter

Deutscher Umweltpreis Clean-Lasersysteme GmbH

cleanCOMFIELD - SUMMARY

In Field application of laser based CFRP is applicable

- Optics are adaptable based on existing tools
- Fume extraction is capable
- On site laser safe shielding is available
- All deliverables completed

-

-

