Skip to main content
European Commission logo
TRIMIS

Aerodynamic Validation of Emission Reducing Techniques

PROJECTS
Funding
European
European Union
Duration
-
Status
Complete with results
Geo-spatial type
Network corridors
Total project cost
€6 749 869
EU Contribution
€3 899 932
Project Acronym
AVERT
STRIA Roadmaps
Vehicle design and manufacturing (VDM)
Transport mode
Airborne icon
Transport policies
Environmental/Emissions aspects,
Societal/Economic issues
Transport sectors
Passenger transport,
Freight transport

Overview

Call for proposal
FP6-2005-AERO-1
Link to CORDIS
Background & Policy context

AVERT delivered upstream aerodynamics research that enabled breakthrough technology deployment and innovative aircraft configuration development and a step change in aircraft performance. The project  contributed to the need to improve the environmental impact of aircraft emissions and the drive to strengthen the competitiveness of European manufacturing industry.

Objectives

AVERT aimed for a 10% improvement in cruise lift-to-drag ratio in addition to that promised by the 'pro-green' configuration. This could be achieved due to direct reductions in profile drag and by unlocking traditional design constraints to reduce vortex drag.

Several flow control technologies have emerged recently that are considered to show sufficient promise, which might be usefully applied to an aircraft in order to reduce drag, either directly or by enabling variations in design that would result in lower drag. AVERT will investigate this selection of devices further with the development focused closely on industrial application. This activity will link directly with the work on manufacturing and control technologies, and will be constantly reviewed by industrial partners. This industrial review will assess the viability and gross performance benefits of the devices when applied to full-scale aircraft.

The following describes the five technical objectives of the AVERT project:

  • Exploration and development of flow-control technologies for high-speed application;
  • Exploration and development of flow-control technologies for low-speed application;
  • Development of manufacturing and control technologies for sensors and actuators;
  • Industrial validation of flow-control technology; and
  • Industrial assessment of flow-control technologies.
Methodology

Devices suitable for high-speed application include active transition control, passive and active turbulent skin friction, drag reduction and active buffet control.

Devices suitable for low-speed application include those which produce oscillatory blowing in a flap gap, and synthetic and fluidic jets for controlling flow separation at the leading edge.

The successful industrialisation and application of arrays of flow-control devices onto an aircraft is highly dependent on the ability to manufacture and install them. Recent advances in MEMS technology (MEMS: microelectromechanical systems) have provided AVERT with the first real opportunity to assess and develop manufacturing processes for large volume production of flow-control devices. Additionally, by drawing on expertise from the field of structural health monitoring, optimisation of the type and distribution of the appropriate devices will be possible, together with the development of advanced means to control them such as open and closed loop systems.

Part of this process was the validation that the manufacturing processes can deliver arrays of devices in sufficient quantity, quality and durability for industrial application. The final step prior to the inclusion of any of these technologies in the product design process was a large-scale wind tunnel validation. This evaluated possible performance gains and provided the final and most rigorous set of performance data for industrial assessment.

Funding

Parent Programmes
Institution Type
Public institution
Institution Name
European Commission
Type of funding
Public (EU)

Results

The expected results were:

  • Quantitative performance of each of the high-speed flow-control technologies;
  • Identification of promising flow-control technologies for high-speed application through the use of the performance results in an industrial assessment process;
  • Specification of the devices selected for industrial validation;
  • Quantitative performance results for each of the low-speed flow-control technologies;
  • Identification of promising flow-control technologies for low-speed application through the use of the performance results in an industrial assessment process;
  • Specification of the devices selected for industrial validation;
  • Feasibility studies concerning the manufacturing processes and costs of selected devices;
  • Control laws for closed loop actuator systems;
  • Optimisation tools for signal specification and array design for devices aimed at T-S instabilities;
  • An array, or arrays, of selected devices manufactured to specifications resulting from the device development activity;
  • Testing of these devices to measure their quality, performance and durability;
  • Modification of one low-speed wind tunnel model and one high-speed wind tunnel model to incorporate selected devices;
  • Test results from wind tunnel tests of the modified models;
  • Validated performance characteristics of the selected devices.

Partners

Lead Organisation
Organisation
Airbus Operations Limited
Address
New Filton House, Filton, BRISTOL, BS99 7AR, United Kingdom
Organisation website
Partner Organisations
Organisation
Dassault Aviation
Address
9, Rond-Point des Champs-Elysées - Marcel Dassault, 75008 PARIS, France
Organisation website
EU Contribution
€0
Organisation
Alenia Aermacchi Spa
Address
Viale Dell'aeronautica Snc, 80038 Pomigliano D'arco (Na), Italy
Organisation website
EU Contribution
€0
Organisation
Eads Deutschland Gmbh
Address
Willy- Messerschmitt- Strasse, OTTOBRUNN, Germany
Organisation website
EU Contribution
€0
Organisation
Deutsches Zentrum Fr Luft Und Raumfahrt E.v
Address
Linder Hoehe, 51147 KOELN, Germany
Organisation website
EU Contribution
€0
Organisation
National Institute For Aerospace Research "elie Carafoli"
Address
Iuliu Maniu 220, 76-179 BUCHAREST, Romania
Organisation website
EU Contribution
€0
Organisation
Office National D' Etudes Et De Recherches Aérospatiales
Address
29, avenue de la Division Leclerc, BP72 CHÂTILLON CEDEX, France
Organisation website
EU Contribution
€0
Organisation
Vyzkumny A Zkuebni Letecky Ustav, A.s.
Address
Beranovych 130, 19905 PRAHA - LETNANY, Czechia
Organisation website
EU Contribution
€0
Organisation
Technische Universitat Berlin
Address
STRASSE DES 17 JUNI 135, 10623 Berlin, Germany
Organisation website
EU Contribution
€0
Organisation
Centre National De La Recherche Scientifique
Address
3 rue Michel-Ange, 75794 PARIS, France
Organisation website
EU Contribution
€0
Organisation
Universidad Politécnica De Madrid
Address
Avda. Ramiro de Maeztu, 3, 28040 MADRID, Spain
Organisation website
EU Contribution
€0
Organisation
Manchester Metropolitan University
Address
All Saints Building, Oxford Road, MANCHESTER, M15 6BH, United Kingdom
Organisation website
EU Contribution
€0
Organisation
University Of Nottingham
Address
University Park, NOTTINGHAM, ng7 2rd, United Kingdom
Organisation website
EU Contribution
€0
Organisation
Airbus Espana, S.l. Sociedad Unipersonal
Address
P John Lenon, s/n, 28906 GETAFE, Spain
Organisation website
EU Contribution
€0
Organisation
Paragon Anonymh Etaireia Meleton Erevnas Kai Emporiou Proigmenhs Texnologias
Address
Protopapadaki Str, 11147 Galatsi, Greece
Organisation website
EU Contribution
€0

Technologies

Contribute! Submit your project

Do you wish to submit a project or a programme? Head over to the Contribute page, login and follow the process!

Submit