Skip to main content
European Commission logo
TRIMIS

Innovative concepts for smart road restraint systems to provide greater safety for vulnerable road users

PROJECTS
Funding
European
European Union
Duration
-
Status
Complete with results
Geo-spatial type
Other
Total project cost
€3 362 397
EU Contribution
€2 193 662
Project website
Project Acronym
SMART RRS
Transport mode
Multimodal icon
Transport policies
Digitalisation,
Decarbonisation,
Societal/Economic issues,
Safety/Security
Transport sectors
Passenger transport

Overview

Call for proposal
FP7-SST-2007-RTD-1
Link to CORDIS
Background & Policy context

Recent WHO and ETSC figures reveal frightening statistics on road traffic accidents across Europe and beyond:

  • 1.2 million people worldwide are killed in road crashes each year, with up to 43,000 deaths in Europe.
  • Up to 50 million people are injured with at least 600,000 hospital admissions directly attributed to road traffic accidents on a European level. This costs European society approximately 160 billion euro, using up 10% of all health care resources. This would mean that by 2020, road traffic injuries will be the third leading contributor to the global disease and injury burden.

See:
World Report on Road Traffic Injury Prevention [WHO, 2004]
Report on European Road Transport Safety [Prof. Mackay, ETSC, 2000]

Many injuries and deaths are the result of impacts with current road restraint systems, especially in the case of vulnerable road users such as motorcyclists, cyclists and passengers where impacts with supports or edges usually result in amputations or sectioning of torsos in a guillotine effect.

Moreover, once an accident has occurred, the time between impact and receiving immediate initial first aid can be crucial: delays in alerting emergency services or incorrect location information can cause the waste of life saving moments for injured people.

The aim of this project was to develop a new smart road restraint system that will reduce the number of deaths and injuries caused in road traffic accidents by integrating primary and tertiary sensor systems in a new RRS system; providing greater protection to all road users, alerting motorists and emergency services of danger so as to prevent accidents happening, and alerting them of accidents as they happen to minimize response time to the exact location of the incident.

Objectives

General Objective of this project was to reduce the number of injuries and deaths caused by road traffic accidents to vulnerable road users such as motorcyclists, cyclists and passengers, through the development of a smart road restraint system. This smart restraint system had to:

  • reduce the number of accidents through better information on the actual state of the road and traffic flow (climatic conditions, traffic flow, obstructions);
  • eliminate dangerous profiles from road restraint systems (crash barriers) that currently endanger vulnerable road users;
  • optimise road safety by providing exact information on where and when accidents happen in real-time.

The specific objectives of the Smart RRS project were to produce systems that are capable of providing a safe road restraint system free from cutting or dangerous profiles/fixing posts:

  • development of this new RRS, using new materials and fixations to absorb crash energy in accidents and detaining moving objects, vehicles and persons safely;
  • provision of timely and useful information to road users that will assist in the prevention of road incidents (Primary safety);
  • provision of timely and useful information to emergency services, road authorities and other road users in the event of a road incident. (Tertiary safety).
Methodology

The road restraint system had to have the following features:

  • Integrated within the road restraint system.
  • Cost effective - in terms of materials costs, installation costs and running costs.
  • Minimizing additional demands on the infrastructure such as power and communications buses.
  • Not providing additional risks for those colliding with the road restraint systems - particularly vulnerable road users such as motorcyclists.
  • Robust against the environment.
  • Robust against system degradation (e.g. the loss of a sensing node will still allow the system as a whole to function).
  • Robust against false triggering (so that, for example, emergency services are not called unnecessarily).
  • Each sensing node should know its location.
  • Sensing nodes should be modular - additional functionality to be easily integrated depending on the location.
  • Capable of being integrated with other roadside infrastructure and traffic management systems.

Funding

Parent Programmes
Institution Type
Public institution
Institution Name
The European Commission
Type of funding
Public (EU)
Specific funding programme
FP7-TRANSPORT
Other Programme
Programme acronym or name (optional)
Funding Source
Information about the funding institution (optional)

Results

The project resulted in the development of a Smart Road Restraint System that could be incorporated within the primary safety roadside system and the tertiary safety road side system. The former having the ability to inform drivers of all kind of vehicles about hazards on the road, accidents that have occurred, weather changes, traffic conditions and new proposed routes. The latter, informing emergency services and incoming traffic, and providing valuable information on the location of accidents, kind of accidents, number of vehicles involved, etc.

Innovation aspects

The project proposed innovative concepts of road safety systems such as:

  • Infrastructure based sensing systems
  • Vehicle based sensing systems
  • Communication systems

The project provided innovative techniques and devices which could be added up to the existing state of art in Road Safety. SMART RRS introduced new sensing systems such as:

  • Inductive Loops
  • Infrastructure Based Imaging Systems
  • Infrastructure Based Radar
  • Road Ice Detection Systems
  • Air Quality Monitoring Systems
  • Vehicle Based Imaging Systems
  • Vehicle Based Radar

Policy implications

The project delivered a proposal for a new evaluation system, a testing protocol and changes in the legislative framework:

  • A new flowchart of activities which set a standard UNE 135900 test as a minimum requirement;
  • A new certification procedure, combining the results of the UNE 135900 (considered as the minimum requirement) and the new test, and increasing the degree of safety provided by the motorcyclist protection system.

Strategy targets

An efficient and integrated mobility system acting on transport safety: saving thousands of lives.

Partners

Lead Organisation
Organisation
Universidad De Zaragoza
Address
Calle Pedro Cerbuna 12, 50009 Zaragoza, Spain
EU Contribution
€660 882
Partner Organisations
Organisation
Mouchel Limited*
Address
Export House, Cawsey Way, Woking, GU21 6QX, United Kingdom
EU Contribution
€127 545
Organisation
Arcellor Mittal Ostrava A.s.
Address
VRATIMOVSKÁ 689, 70702 OSTRAVA - KUNCICE, Czechia
Organisation website
EU Contribution
€36 525
Organisation
Essex County Council
Address
County Hall Chelmsford, Chelmsford, CM1 1JZ, United Kingdom
EU Contribution
€46 520
Organisation
Universita Degli Studi Di Firenze
Address
Piazza San Marco 4, 50121 Florence, Italy
Organisation website
EU Contribution
€279 264
Organisation
Idiada Automotive Technology Sa
Address
L Albornar, 43710 Santa Oliva, Spain
EU Contribution
€228 900
Organisation
Atkins Advantage Technical Consulting Limited
Address
WOODCOTE GROVE, ASHLEY ROAD, EPSOM, SURREY, KT18 5BW, United Kingdom
Organisation website
EU Contribution
€12 158
Organisation
Trw Limited
Address
Stratford Road, Solihull, B90 4AX, United Kingdom
Organisation website
EU Contribution
€517 919
Organisation
Instituto De Investigacion Sobre Reparacion De Vehiculos Sa*
Address
Carretera Nacional 232 Km 273-3, 50690 Pedrola, Spain
Organisation website
EU Contribution
€95 690
Organisation
Federation Of European Motorcyclist' Associations
Address
Rue Des Champs, 1040 Bruxelles, Belgium
Organisation website
EU Contribution
€110 260
Organisation
Sistemas De Proteccion Para Seguridad Vial Sl
Address
Tr Camino Monzalbarba 32, 50011 Zaragoza, Spain
EU Contribution
€78 000

Technologies

Technology Theme
Safety systems
Technology
Technologies to improve road safety
Development phase
Research/Invention

Contribute! Submit your project

Do you wish to submit a project or a programme? Head over to the Contribute page, login and follow the process!

Submit